REAL-TIME HAND GESTURE FEATURE EXTRACTION USING DEPTH DATA

被引:0
|
作者
Huang, Hao [1 ]
Ju, Zhaojie [2 ]
Liu, Honghai [2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan, Peoples R China
[2] Univ Portsmouth, Sch Comp, Portsmouth PO1 2UP, Hants, England
关键词
Hand gestures; Feature extraction; Kinect sensor; EMD;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a novel method is proposed to extract hand gesture features in real-time from RGB-D images captured by the Microsoft's Kinect. A contour length information based de-noise method is introduced for the hand gesture smooth segmentation and edge contour extraction. In addition, a finger earth mover's distance algorithm is applied with a novel approach to locate the palm image and extract fingertip features. Especially the proposed Lasso algorithm can effectively extract the fingertip feature from a hand contour curve correctly with excellent real-time performance.
引用
收藏
页码:206 / 213
页数:8
相关论文
共 50 条
  • [31] Real-Time Gesture Recognition for Controlling a Virtual Hand
    Moldovan, Catalin Constantin
    Staretu, Ionel
    [J]. ADVANCED MATERIALS RESEARCH II, PTS 1 AND 2, 2012, 463-464 : 1147 - +
  • [32] Hand Gesture Recognition system for Real-Time Application
    Murugeswari, M.
    Veluchamy, S.
    [J]. 2014 INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES (ICACCCT), 2014, : 1220 - 1225
  • [33] Real-Time Macro Gesture Recognition Using Efficient Empirical Feature Extraction With Millimeter-Wave Technology
    Ninos, Alexandros
    Hasch, Juergen
    Zwick, Thomas
    [J]. IEEE SENSORS JOURNAL, 2021, 21 (13) : 15161 - 15170
  • [34] Real-Time Segmentation and Feature Extraction of Electromyography: Towards Control of a Prosthetic Hand
    Eisenberg, Gabriel D.
    Fyvie, Kyle G. H. M.
    Mohamed, Abdul-Khaaliq
    [J]. IFAC PAPERSONLINE, 2017, 50 (02): : 151 - 156
  • [35] Real-time Hand Gesture Detection and Classification Using Convolutional Neural Networks
    Koepueklue, Okan
    Gunduz, Ahmet
    Kose, Neslihan
    Rigoll, Gerhard
    [J]. 2019 14TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2019), 2019, : 407 - 414
  • [36] Real-time hand gesture recognition using multiple deep learning architectures
    Apeksha Aggarwal
    Nikhil Bhutani
    Ritvik Kapur
    Geetika Dhand
    Kavita Sheoran
    [J]. Signal, Image and Video Processing, 2023, 17 : 3963 - 3971
  • [37] Novel Haar features for real-time hand gesture recognition using SVM
    Chen-Chiung Hsieh
    Dung-Hua Liou
    [J]. Journal of Real-Time Image Processing, 2015, 10 : 357 - 370
  • [38] A Real-time Dynamic Hand Gesture Recognition System Using Kinect Sensor
    Chen, Yanmei
    Luo, Bing
    Chen, Yen-Lun
    Liang, Guoyuan
    Wu, Xinyu
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2015, : 2026 - 2030
  • [39] A Study of Real-Time Hand Gesture Recognition Using SIFT on Binary Images
    Lin, Wei-Syun
    Wu, Yi-Leh
    Hung, Wei-Chih
    Tang, Cheng-Yuan
    [J]. Smart Innovation, Systems and Technologies, 2013, 21 : 235 - 246
  • [40] Real-time hand gesture recognition using multiple deep learning architectures
    Aggarwal, Apeksha
    Bhutani, Nikhil
    Kapur, Ritvik
    Dhand, Geetika
    Sheoran, Kavita
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (08) : 3963 - 3971