A SPACE-TIME DATA CUBE: MULTI-TEMPORAL FOREST STRUCTURE MAPS FROM LANDSAT AND LIDAR

被引:0
|
作者
Matasci, Giona [1 ]
Hermosilla, Txomin [1 ]
Wulder, Michael A. [2 ]
White, Joanne C. [2 ]
Hobart, Geordie W. [2 ]
Zald, Harold S. J. [3 ]
Coops, Nicholas C. [1 ]
机构
[1] Univ British Columbia, Dept Forest Resources Management, Integrated Remote Sensing Studio, Vancouver, BC, Canada
[2] Nat Resources Canada, Canadian Forest Serv, Pacific Forestry Ctr, Victoria, BC, Canada
[3] Humboldt State Univ, Dept Forestry & Wildland Resources, Arcata, CA 95521 USA
关键词
LiDAR plots; Landsat pixel composites; time-series; forest mapping; imputation; Random Forest; INTEGRATION; INVENTORY; SERIES; PLOTS;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this study, we prototype the combination of samples of airborne LiDAR (LiDAR plots) and Landsat data to characterize the development of forest structure attributes through time. A nearest neighbor imputation model was developed using predictors generated from wall-to-wall Landsat best available pixel (BAP) composites and reference measurements of forest structure derived from LiDAR plots. The imputation model was then applied through time on a study area in Canada's boreal forest, resulting in forest structure maps with a 30 m resolution for the period 1984-2012. We characterize post-disturbance trends in these forest structural metrics following wildfire and harvest and offer insights on the large-area, temporally dense mapping opportunities offered by the synergistic use of samples of airborne LiDAR and Landsat BAP composites.
引用
下载
收藏
页码:2581 / 2584
页数:4
相关论文
共 50 条
  • [21] Feasibility of the Space-Time Cube in Temporal Cultural Landscape Visualization
    Bogucka, Edyta P.
    Jahnke, Mathias
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 7 (06):
  • [22] Forest above-ground woody biomass estimation using multi-temporal space-borne LiDAR data in a managed forest at Haldwani, India
    Musthafa, Mohamed
    Singh, Gulab
    ADVANCES IN SPACE RESEARCH, 2022, 69 (09) : 3245 - 3257
  • [23] Automated crop field extraction from multi-temporal Web Enabled Landsat Data
    Yan, L.
    Roy, D. P.
    REMOTE SENSING OF ENVIRONMENT, 2014, 144 : 42 - 64
  • [24] ESTIMATE FOREST BIOMASS DYNAMICS USING MULTI-TEMPORAL LIDAR AND SINGLE-DATE INVENTORY DATA
    Nguyen, Trung H.
    Jones, Simon
    Soto-Berelov, Mariela
    Haywood, Andrew
    Hislop, Samuel
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 7338 - 7341
  • [25] Monitoring deforestation and forest degradation using multi-temporal fraction images derived from Landsat sensor data in the Brazilian Amazon
    Shimabukuro, Yosio Edemir
    Arai, Egidio
    Duarte, Valdete
    Jorge, Anderson
    dos Santos, Erone Ghizoni
    Cruz Gasparini, Kaio Allan
    Dutra, Andeise Cerqueira
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (14) : 5475 - 5496
  • [26] Using Space-Time Features to Improve Detection of Forest Disturbances from Landsat Time Series
    Hamunyela, Eliakim
    Reiche, Johannes
    Verbesselt, Jan
    Herold, Martin
    REMOTE SENSING, 2017, 9 (06)
  • [27] DOWNSCALING VEGETATION FRACTION BY FUSING MULTI-TEMPORAL MODIS AND LANDSAT DATA
    Wang, Jinying
    Wang, Hongyan
    Li, Xiaosong
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 757 - 760
  • [28] Improving local forest volume estimates by fusion of multi-temporal forest type maps
    De Groeve, T
    Lowell, K
    ENVIRONMENTAL MODELLING & SOFTWARE, 2000, 15 (04) : 373 - 385
  • [29] Space-time soil wetness variations monitoring by a multi-temporal microwave satellite records analysis
    Lacava, T.
    Di Leo, E. V.
    Pergola, N.
    Tramutoli, V.
    PHYSICS AND CHEMISTRY OF THE EARTH, 2006, 31 (18) : 1274 - 1283
  • [30] Lidar with multi-temporal MODIS provide a means to upscale predictions of forest biomass
    Li, Le
    Guo, Qinghua
    Tao, Shengli
    Kelly, Maggi
    Xu, Guangcai
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 102 : 198 - 208