A SPACE-TIME DATA CUBE: MULTI-TEMPORAL FOREST STRUCTURE MAPS FROM LANDSAT AND LIDAR

被引:0
|
作者
Matasci, Giona [1 ]
Hermosilla, Txomin [1 ]
Wulder, Michael A. [2 ]
White, Joanne C. [2 ]
Hobart, Geordie W. [2 ]
Zald, Harold S. J. [3 ]
Coops, Nicholas C. [1 ]
机构
[1] Univ British Columbia, Dept Forest Resources Management, Integrated Remote Sensing Studio, Vancouver, BC, Canada
[2] Nat Resources Canada, Canadian Forest Serv, Pacific Forestry Ctr, Victoria, BC, Canada
[3] Humboldt State Univ, Dept Forestry & Wildland Resources, Arcata, CA 95521 USA
关键词
LiDAR plots; Landsat pixel composites; time-series; forest mapping; imputation; Random Forest; INTEGRATION; INVENTORY; SERIES; PLOTS;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this study, we prototype the combination of samples of airborne LiDAR (LiDAR plots) and Landsat data to characterize the development of forest structure attributes through time. A nearest neighbor imputation model was developed using predictors generated from wall-to-wall Landsat best available pixel (BAP) composites and reference measurements of forest structure derived from LiDAR plots. The imputation model was then applied through time on a study area in Canada's boreal forest, resulting in forest structure maps with a 30 m resolution for the period 1984-2012. We characterize post-disturbance trends in these forest structural metrics following wildfire and harvest and offer insights on the large-area, temporally dense mapping opportunities offered by the synergistic use of samples of airborne LiDAR and Landsat BAP composites.
引用
下载
收藏
页码:2581 / 2584
页数:4
相关论文
共 50 条
  • [1] Characterizing boreal forest wildfire with multi-temporal Landsat and LIDAR data
    Wulder, M. A.
    White, J. C.
    Alvarez, F.
    Han, T.
    Rogan, J.
    Hawkes, B.
    REMOTE SENSING OF ENVIRONMENT, 2009, 113 (07) : 1540 - 1555
  • [2] Multi-temporal LiDAR and Landsat quantification of fire-induced changes to forest structure
    McCarley, T. Ryan
    Kolden, Crystal A.
    Vaillant, Nicole M.
    Hudak, Andrew T.
    Smith, Alistair M. S.
    Wing, Brian M.
    Kellogg, Bryce S.
    Kreitler, Jason
    REMOTE SENSING OF ENVIRONMENT, 2017, 191 : 419 - 432
  • [3] DETECTION OF FOREST CHANGES WITH MULTI-TEMPORAL LIDAR DATA
    Dalponte, Michele
    Liu, Sicong
    Gianelle, Damiano
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 9011 - 9013
  • [4] Enhancing land cover maps derived from Landsat TM with multi-temporal SAR data
    Solbo, S
    Johansen, B
    Malnes, E
    Solheim, I
    IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 1287 - 1290
  • [5] Characterizing forest carbon dynamics using multi-temporal lidar data
    Dalponte, Michele
    Jucker, Tommaso
    Liu, Sicong
    Frizzera, Lorenzo
    Gianelle, Damiano
    REMOTE SENSING OF ENVIRONMENT, 2019, 224 : 412 - 420
  • [6] Monitoring Mangrove Forest Changes from Multi-temporal Landsat Data in Can Gio Biosphere Reserve, Vietnam
    Nguyen Thanh Son
    Bui Xuan Thanh
    Chau Thi Da
    Wetlands, 2016, 36 : 565 - 576
  • [7] Monitoring Mangrove Forest Changes from Multi-temporal Landsat Data in Can Gio Biosphere Reserve, Vietnam
    Nguyen Thanh Son
    Bui Xuan Thanh
    Chau Thi Da
    WETLANDS, 2016, 36 (03) : 565 - 576
  • [8] FOREST MAPPING AND MONITORING IN TASMANIA USING MULTI-TEMPORAL LANDSAT AND ALOS-PALSAR DATA
    Lehmann, E. A.
    Zhou, Z. -S.
    Caccetta, P.
    Milne, A.
    Mitchell, A.
    Lowell, K.
    Held, A.
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 6431 - 6434
  • [9] Assessment of forest cover changes using multi-temporal Landsat observation
    Elahe Moradi
    Alireza Sharifi
    Environment, Development and Sustainability, 2023, 25 : 1351 - 1360
  • [10] Comparative Analysis of Multi-Platform, Multi-Resolution, Multi-Temporal LiDAR Data for Forest Inventory
    Lin, Yi-Chun
    Shao, Jinyuan
    Shin, Sang-Yeop
    Saka, Zainab
    Joseph, Mina
    Manish, Raja
    Fei, Songlin
    Habib, Ayman
    REMOTE SENSING, 2022, 14 (03)