Packing cycles in complete graphs

被引:21
|
作者
Bryant, Darryn [1 ]
Horsley, Daniel [1 ]
机构
[1] Univ Queensland, Dept Math, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
cycle decompositions; graph decompositions; graph packing;
D O I
10.1016/j.jctb.2007.12.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new technique for packing pairwise edge-disjoint cycles of specified lengths in complete graphs and use it to prove several results. Firstly, we prove the existence of dense packings of the complete graph with pairwise edge-disjoint cycles of arbitrary specified lengths. We then use this result to prove the existence of decompositions of the complete graph of odd order into pairwise edge-disjoint cycles for a large family of lists of specified cycle lengths. Finally, we construct new maximum packings of the complete graph with pairwise edge-disjoint cycles of uniform length. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1014 / 1037
页数:24
相关论文
共 50 条
  • [41] PACKING AND COVERING OF COMPLETE GRAPH WITH 4-CYCLES
    SCHONHEIM, J
    BIALOSTOCKI, A
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1975, 18 (05): : 703 - 708
  • [42] Orbits of Hamiltonian Paths and Cycles in Complete Graphs
    Herman, Samuel
    Poimenidou, Eirini
    JOURNAL OF INTEGER SEQUENCES, 2020, 23 (07)
  • [43] On rainbow cycles in edge colored complete graphs
    Akbari, S.
    Etesami, O.
    Mahini, H.
    Mahmoody, M.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2007, 37 : 33 - 42
  • [44] Decompositions of complete graphs into triangles and Hamilton cycles
    Bryant, D
    Maenhaut, B
    JOURNAL OF COMBINATORIAL DESIGNS, 2004, 12 (03) : 221 - 232
  • [45] Decomposition of complete bipartite graphs into paths and cycles
    Jeevadoss, S.
    Muthusamy, A.
    DISCRETE MATHEMATICS, 2014, 331 : 98 - 108
  • [46] Bootstrap percolation on products of cycles and complete graphs
    Gravner, Janko
    Sivakoff, David
    ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
  • [47] Addressing Johnson Graphs, Complete Multipartite Graphs, Odd Cycles, and Random Graphs
    Alon, Noga
    Cioaba, Sebastian M.
    Gilbert, Brandon D.
    Koolen, Jack H.
    McKay, Brendan D.
    EXPERIMENTAL MATHEMATICS, 2021, 30 (03) : 372 - 382
  • [48] Partitioning complete bipartite graphs by monochromatic cycles
    Haxell, PE
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 69 (02) : 210 - 218
  • [49] Multidecompositions of complete bipartite graphs into cycles and stars
    Lee, Hung-Chih
    ARS COMBINATORIA, 2013, 108 : 355 - 364
  • [50] STRUCTURE OF COMPLETE GRAPHS WITHOUT ALTERNATING CYCLES
    CHEN, CC
    DISCRETE MATHEMATICS, 1979, 28 (01) : 1 - 5