Dynamic Symbolic Execution Tool for Python']Python Programs

被引:1
|
作者
Ding, Xuefeng [1 ]
Huang, Wanyu [2 ]
Liu, Ying [3 ]
Chen Wantao [3 ]
Ding Xuyang [3 ]
机构
[1] Sichuan Univ, Chengdu 610041, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Ctr Cyber Secur, Chengdu 611731, Sichuan, Peoples R China
[3] Power China Chengdu Engn Corp Ltd, Chengdu 610072, Sichuan, Peoples R China
关键词
Dynamic symbolic execution; Automated testing; !text type='Python']Python[!/text] program; Dynamic symbolic execution tool;
D O I
10.1109/ICITBS.2016.88
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Dynamic symbolic execution is an important automated testing technique. Firstly, we introduce the traditional symbolic execution and dynamic symbolic execution technology, and then review the research status of Python application testing with dynamic symbolic execution technology. Then we compare and analyze the dynamic symbolic execution tools with the existing Python programs and Architectures, performance, and supported data types. Finally, the development direction of this field prospects. It is helpful for researchers to understand the progress of dynamic symbolic execution technology in current Python program and lay a foundation for future research work.
引用
收藏
页码:212 / 217
页数:6
相关论文
共 50 条
  • [31] CharmFL: A Fault Localization Tool for Python']Python
    Sarhan, Qusay Idrees
    Szatmari, Attila
    Toth, Rajmond
    Beszedes, Arpad
    IEEE 21ST INTERNATIONAL WORKING CONFERENCE ON SOURCE CODE ANALYSIS AND MANIPULATION (SCAM 2021), 2021, : 114 - 119
  • [32] An empirical study of fault localization in Python']Python programs
    Rezaalipour, Mohammad
    Furia, Carlo A.
    EMPIRICAL SOFTWARE ENGINEERING, 2024, 29 (04)
  • [33] Syntactic Generation of Practice Novice Programs in Python']Python
    Ade-Ibijola, Abejide
    ICT EDUCATION, SACLA 2018, 2019, 963 : 158 - 172
  • [34] Evaluation of Static Analysis Methods of Python']Python Programs
    Gulabovska, Hristina
    Porkolab, Zoltan
    IPSI BGD TRANSACTIONS ON INTERNET RESEARCH, 2020, 16 (02): : 39 - 46
  • [35] Automatic Optimization of Python']Python Skeletal Parallel Programs
    Loulergue, Frederic
    Philippe, Jolan
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING (ICA3PP 2019), PT I, 2020, 11944 : 183 - 197
  • [36] Improving Mutation Testing Process of Python']Python Programs
    Derezinska, Anna
    Halas, Konrad
    SOFTWARE ENGINEERING IN INTELLIGENT SYSTEMS (CSOC2015), VOL 3, 2015, 349 : 233 - 242
  • [37] Pyomo: modeling and solving mathematical programs in Python']Python
    Hart, William E.
    Watson, Jean-Paul
    Woodruff, David L.
    MATHEMATICAL PROGRAMMING COMPUTATION, 2011, 3 (03) : 219 - 260
  • [38] Musicaiz: A python']python library for symbolic music generation, analysis and visualization
    Hernandez-Olivan, Carlos
    Beltran, Jose R.
    SOFTWAREX, 2023, 22
  • [39] Using SymPy (Symbolic Python']Python) for Understanding Structural Equation Modeling
    Steele, Joel S.
    Grimm, Kevin J.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2024,
  • [40] PySyComp: A Symbolic Python']Python Library for the Undergraduate Quantum Chemistry Course
    Stippell, Elizabeth
    Akimov, Alexey V.
    Prezhdo, Oleg V.
    JOURNAL OF CHEMICAL EDUCATION, 2023, 100 (10) : 4077 - 4084