Discrete and continuous nonlinear models for the vibrating rod

被引:3
|
作者
Gotusso, L
Veneziani, A
机构
[1] Dipartimento di Matematica, Politecnico di Milano
关键词
nonlinear differential and difference equations; discrete models; vibrating rod;
D O I
10.1016/0895-7177(96)00110-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Discrete linear and nonlinear models for the vibrating rod with a Greenspan approach and the corresponding continuous models are considered. The discretization order of the discrete schemes with respect to the continuous ones and the stability conditions in numerical integration are considered. Finally, some numerical results are analyzed.
引用
收藏
页码:99 / 115
页数:17
相关论文
共 50 条
  • [41] Challenges in the Identification of Discrete Time Block Oriented Models for Continuous Time Nonlinear Systems
    Schoukens, J.
    Vaes, M.
    Esfahani, A. F.
    Relan, R.
    IFAC PAPERSONLINE, 2015, 48 (28): : 596 - 601
  • [42] Identification of continuous-time models for nonlinear dynamic systems from discrete data
    Guo, Yuzhu
    Guo, Ling Zhong
    Billings, Stephen A.
    Wei, Hua-Liang
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2016, 47 (12) : 3044 - 3054
  • [43] Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models
    Bogoya, Mauricio
    Ferreira, Raul
    Rossi, Julio D.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (12) : 3837 - 3846
  • [44] INVESTIGATING NONLINEAR MODELS FOR HEALTH MONITORING IN VIBRATING STRUCTURES
    Doughty, Timothy A.
    Leineweber, Matthew J.
    IMECE 2009: PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, VOL 11, 2010, : 57 - 62
  • [45] A new continuous-discrete particle filter for continuous-discrete nonlinear systems
    Xia, Yuanqing
    Deng, Zhihong
    Li, Li
    Geng, Xiumei
    INFORMATION SCIENCES, 2013, 242 : 64 - 75
  • [46] Nonlinear vibrations and mode interactions for a continuous rod with microstructure
    Andrianov, Igor V.
    Danishevskyy, Vladyslav V.
    Markert, Bernd
    JOURNAL OF SOUND AND VIBRATION, 2015, 351 : 268 - 281
  • [47] Discrete and Continuous Models for Partitioning Problems
    Jan Lellmann
    Björn Lellmann
    Florian Widmann
    Christoph Schnörr
    International Journal of Computer Vision, 2013, 104 : 241 - 269
  • [48] Improved Continuous Models for Discrete Media
    Andrianov, I. V.
    Awrejcewicz, J.
    Weichert, D.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
  • [49] Odefy - From discrete to continuous models
    Jan Krumsiek
    Sebastian Pölsterl
    Dominik M Wittmann
    Fabian J Theis
    BMC Bioinformatics, 11
  • [50] DISCRETE CONTINUOUS MODELS OF CONSUMER DEMAND
    HANEMANN, WM
    ECONOMETRICA, 1984, 52 (03) : 541 - 561