Machine Learning-aided Design of Thinned Antenna Arrays for Optimized Network Level Performance

被引:0
|
作者
Lecci, Mattia [1 ]
Testolina, Paolo [1 ]
Rebato, Mattia [1 ]
Testolin, Alberto [1 ]
Zorzi, Michele [1 ]
机构
[1] Univ Padua, Dept Informat Engn, Padua, Italy
关键词
5G; machine learning; optimization; antenna design; emulation;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the advent of millimeter wave (mmWave) communications, the combination of a detailed SG network simulator with an accurate antenna radiation model is required to analyze the realistic performance of complex cellular scenarios. However, due to the complexity of both electromagnetic and network models, the design and optimization of antenna arrays is generally infeasible due to the required computational resources and simulation time. In this paper, we propose a Machine Learning framework that enables a simulation-based optimization of the antenna design. We show how learning methods are able to emulate a complex simulator with a modest dataset obtained from it, enabling a global numerical optimization over a vast multi-dimensional parameter space in a reasonable amount of time. Overall, our results show that the proposed methodology can be successfully applied to the optimization of thinned antenna arrays.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Machine learning-aided design of aluminum alloys with high performance
    Chaudry, Umer Masood
    Hamad, Kotiba
    Abuhmed, Tamer
    MATERIALS TODAY COMMUNICATIONS, 2021, 26
  • [2] Machine learning-aided generative molecular design
    Du, Yuanqi
    Jamasb, Arian R.
    Guo, Jeff
    Fu, Tianfan
    Harris, Charles
    Wang, Yingheng
    Duan, Chenru
    Lio, Pietro
    Schwaller, Philippe
    Blundell, Tom L.
    NATURE MACHINE INTELLIGENCE, 2024, : 589 - 604
  • [3] Design of Thinned Antenna Arrays
    Ulichny, K.
    Levine, E.
    Matzner, H.
    2015 IEEE 5TH ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), 2015, : 238 - 241
  • [4] Machine learning-aided design optimization of a mechanical micromixer
    Granados-Ortiz, F-J
    Ortega-Casanova, J.
    PHYSICS OF FLUIDS, 2021, 33 (06)
  • [5] Design of a machine learning-aided screening framework for antibiofilm peptides
    Puchakayala, Hema Chandra
    Bhatnagar, Pranshul
    Nambiar, Pranav
    Dutta, Arnab
    Mitra, Debirupa
    DIGITAL CHEMICAL ENGINEERING, 2023, 8
  • [6] Machine Learning-Aided Design of Materials with Target Elastic Properties
    Zeng, Shuming
    Li, Geng
    Zhao, Yinchang
    Wang, Ruirui
    Ni, Jun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (08): : 5042 - 5047
  • [7] Machine Learning-Aided Optical Performance Monitoring Techniques: A Review
    Tizikara, Dativa K.
    Serugunda, Jonathan
    Katumba, Andrew
    FRONTIERS IN COMMUNICATIONS AND NETWORKS, 2022, 2
  • [8] A Dynamic Representation Solution for Machine Learning-Aided Performance Technology
    Palamara, Jason
    Deal, W. Scott
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2020, 3
  • [9] Machine Learning-Aided Exploration of Ultrahard Materials
    Tawfik, Sherif Abdulkader
    Nguyen, Phuoc
    Tran, Truyen
    Walsh, Tiffany R.
    Venkatesh, Svetha
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (37): : 15952 - 15961
  • [10] Adversarial attacks on machine learning-aided visualizations
    Fujiwara, Takanori
    Kucher, Kostiantyn
    Wang, Junpeng
    Martins, Rafael M.
    Kerren, Andreas
    Ynnerman, Anders
    JOURNAL OF VISUALIZATION, 2025, 28 (01) : 133 - 151