Infinite Hidden Conditional Random Fields for Human Behavior Analysis

被引:30
|
作者
Bousmalis, Konstantinos [1 ]
Zafeiriou, Stefanos [1 ]
Morency, Louis-Philippe [3 ]
Pantic, Maja [1 ,2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England
[2] Univ Twente, Fac Elect Engn Math & Comp Sci, NL-7522 NB Enschede, Netherlands
[3] Univ So Calif, Inst Creat Technol, Playa Vista, CA 90094 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Discriminative models; hidden conditional random fields; nonparametric Bayesian learning;
D O I
10.1109/TNNLS.2012.2224882
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hidden conditional random fields (HCRFs) are discriminative latent variable models that have been shown to successfully learn the hidden structure of a given classification problem (provided an appropriate validation of the number of hidden states). In this brief, we present the infinite HCRF (iHCRF), which is a nonparametric model based on hierarchical Dirichlet processes and is capable of automatically learning the optimal number of hidden states for a classification task. We show how we learn the model hyperparameters with an effective Markov-chain Monte Carlo sampling technique, and we explain the process that underlines our iHCRF model with the Restaurant Franchise Rating Agencies analogy. We show that the iHCRF is able to converge to a correct number of represented hidden states, and outperforms the best finite HCRFs-chosen via cross-validation-for the difficult tasks of recognizing instances of agreement, disagreement, and pain. Moreover, the iHCRF manages to achieve this performance in significantly less total training, validation, and testing time.
引用
收藏
页码:170 / 177
页数:8
相关论文
共 50 条
  • [31] Deep-Structured Hidden Conditional Random Fields for Phonetic Recognition
    Yu, Dong
    Deng, Li
    11TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2010 (INTERSPEECH 2010), VOLS 3 AND 4, 2010, : 2986 - 2989
  • [32] Non-parametric Hidden Conditional Random Fields for Action Classification
    Raman, Natraj
    Maybank, S. J.
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 3256 - 3263
  • [33] Adaptive foreground and shadow segmentation using hidden conditional random fields
    Chu Yi-ping
    Ye Xiu-zi
    Qian Jiang
    Zhang Yin
    Zhang San-yuan
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2007, 8 (04): : 586 - 592
  • [34] Grammatical-Restrained Hidden Conditional Random Fields for Bioinformatics applications
    Fariselli, Piero
    Savojardo, Castrense
    Martelli, Pier Luigi
    Casadio, Rita
    ALGORITHMS FOR MOLECULAR BIOLOGY, 2009, 4 : 13
  • [35] Adaptive video segmentation algorithm using hidden conditional random fields
    Chu, Yi-Ping
    Zhang, Yin
    Ye, Xiu-Zi
    Zhang, San-Yuan
    Zidonghua Xuebao/Acta Automatica Sinica, 2007, 33 (12): : 1252 - 1258
  • [36] Aneuploidy prediction and tumor classification with heterogeneous hidden conditional random fields
    Barutcuoglu, Zafer
    Airoldi, Edoardo M.
    Dumeaux, Vanessa
    Schapire, Robert E.
    Troyanskaya, Olga G.
    BIOINFORMATICS, 2009, 25 (10) : 1307 - 1313
  • [37] Grammatical-Restrained Hidden Conditional Random Fields for Bioinformatics applications
    Piero Fariselli
    Castrense Savojardo
    Pier Luigi Martelli
    Rita Casadio
    Algorithms for Molecular Biology, 4
  • [38] Viewpoint Insensitive Actions Recognition Using Hidden Conditional Random Fields
    Ji, Xiaofei
    Liu, Honghai
    Li, Yibo
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT I, 2010, 6276 : 369 - +
  • [40] Hidden Conditional Random Fields with Distributed User Embeddings for Ad Targeting
    Djuric, Nemanja
    Radosavljevic, Vladan
    Grbovic, Mihajlo
    Bhamidipati, Narayan
    2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2014, : 779 - 784