Infinite Hidden Conditional Random Fields for Human Behavior Analysis

被引:30
|
作者
Bousmalis, Konstantinos [1 ]
Zafeiriou, Stefanos [1 ]
Morency, Louis-Philippe [3 ]
Pantic, Maja [1 ,2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England
[2] Univ Twente, Fac Elect Engn Math & Comp Sci, NL-7522 NB Enschede, Netherlands
[3] Univ So Calif, Inst Creat Technol, Playa Vista, CA 90094 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Discriminative models; hidden conditional random fields; nonparametric Bayesian learning;
D O I
10.1109/TNNLS.2012.2224882
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hidden conditional random fields (HCRFs) are discriminative latent variable models that have been shown to successfully learn the hidden structure of a given classification problem (provided an appropriate validation of the number of hidden states). In this brief, we present the infinite HCRF (iHCRF), which is a nonparametric model based on hierarchical Dirichlet processes and is capable of automatically learning the optimal number of hidden states for a classification task. We show how we learn the model hyperparameters with an effective Markov-chain Monte Carlo sampling technique, and we explain the process that underlines our iHCRF model with the Restaurant Franchise Rating Agencies analogy. We show that the iHCRF is able to converge to a correct number of represented hidden states, and outperforms the best finite HCRFs-chosen via cross-validation-for the difficult tasks of recognizing instances of agreement, disagreement, and pain. Moreover, the iHCRF manages to achieve this performance in significantly less total training, validation, and testing time.
引用
下载
收藏
页码:170 / 177
页数:8
相关论文
共 50 条
  • [1] Variational Infinite Hidden Conditional Random Fields
    Bousmalis, Konstantinos
    Zafeiriou, Stefanos
    Morency, Louis-Philippe
    Pantic, Maja
    Ghahramani, Zoubin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (09) : 1917 - 1929
  • [2] Hidden conditional random fields
    Quattoni, Ariadna
    Wang, Sybor
    Morency, Louis-Philippe
    Collins, Michael
    Darrell, Trevor
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (10) : 1848 - 1853
  • [3] Infinite Latent Conditional Random Fields
    Jiang, Yun
    Saxena, Ashutosh
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2013, : 262 - 266
  • [4] AFFECT ANALYSIS IN NATURAL HUMAN INTERACTION USING JOINT HIDDEN CONDITIONAL RANDOM FIELDS
    Siddiquie, Behjat
    Khan, Saad
    Divakaran, Ajay
    Sawhney, Harpreet
    2013 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME 2013), 2013,
  • [5] Robust Incremental Hidden Conditional Random Fields for Human Action Recognition
    Vrigkas, Michalis
    Mastora, Ermioni
    Nikou, Christophoros
    Kakadiaris, Ioannis A.
    ADVANCES IN VISUAL COMPUTING, ISVC 2018, 2018, 11241 : 126 - 136
  • [6] Hidden Conditional Random Fields for Phone Recognition
    Sung, Yun-Hsuan
    Jurafsky, Dan
    2009 IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION & UNDERSTANDING (ASRU 2009), 2009, : 107 - 112
  • [7] Hidden Conditional Random Fields for Face Recognition
    Yang, Huachun
    INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2012), 2013, 8768
  • [8] Hidden Conditional Random Fields for Face Recognition
    Yang, Huachun
    2013 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND APPLICATIONS (CSA), 2013, : 337 - 340
  • [9] Hidden Conditional Random Fields for Gait Recognition
    Hagui, Mabrouka
    Mahjoub, Mohamed Ali
    2016 SECOND INTERNATIONAL IMAGE PROCESSING, APPLICATIONS AND SYSTEMS (IPAS), 2016,
  • [10] Training algorithms for hidden conditional random fields
    Mahajan, Milind
    Gunawardana, Asela
    Acero, Alex
    2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13, 2006, : 273 - 276