Superconvergence analysis for a semilinear parabolic equation with BDF-3 finite element method

被引:0
|
作者
Wang, Junjun [1 ]
机构
[1] Pingdingshan Univ, Sch Math & Stat, Pingdingshan, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Superconvergence result; semilinear parabolic equation; BDF-3; FEM; the temporal and the spatial errors; GLOBAL SUPERCONVERGENCE; STOKES EQUATIONS;
D O I
10.1080/00036811.2020.1789594
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main aim of this paper is to obtain superconvergence result for a semilinear parabolic equation with 3-step backward differential formula Galerkin finite element method. The time-discrete system is established to split the error into the temporal error and spatial error. The initial two steps of the temporal error is dealt with by a new way to ensure the third-order accuracy of the scheme. Some new tricks are utilized to get the spatial error in H-1-norm of order O(h(h + tau(3/2))) without the ratio between the spatial subdivision parameter h and the temporal step tau, which improves the corresponding results in the previous literature. The final superconvergence result is deduced by the above achievements and trigonometric inequality. Two numerical examples are provided to support the theoretical analysis.
引用
收藏
页码:1822 / 1832
页数:11
相关论文
共 50 条
  • [31] Superconvergence analysis for nonlinear Schrodinger equation with two-grid finite element method
    Wang, Junjun
    Li, Meng
    Guo, Lijuan
    [J]. APPLIED MATHEMATICS LETTERS, 2021, 122
  • [32] Superconvergence analysis of a two grid finite element method for Ginzburg-Landau equation
    Shi, Dongyang
    Liu, Qian
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 365
  • [33] THE CONVERGENCE OF A MULTIDIMENSIONAL, LOCALLY CONSERVATIVE EULERIAN-LAGRANGIAN FINITE ELEMENT METHOD FOR A SEMILINEAR PARABOLIC EQUATION
    Douglas, Jim, Jr.
    Spagnuolo, Anna Maria
    Yi, Son-Young
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (02): : 315 - 348
  • [34] SUPERCONVERGENCE OF THE MORTAR FINITE ELEMENT APPROXIMATION TO A PARABOLIC PROBLEM
    GU Hong ZHOU Aihui(Institute of Systems Science
    [J]. Journal of Systems Science & Complexity, 1999, (04) : 350 - 356
  • [35] Superconvergence of a discontinuous finite element method for a nonlinear ordinary differential equation
    Deng, Kang
    Xiong, Zhiguang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (07) : 3511 - 3515
  • [36] A parareal exponential integrator finite element method for semilinear parabolic equations
    Huang, Jianguo
    Ju, Lili
    Xu, Yuejin
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (06)
  • [37] EFFICIENT EXPONENTIAL INTEGRATOR FINITE ELEMENT METHOD FOR SEMILINEAR PARABOLIC EQUATIONS
    Huang, Jianguo
    Ju, Lili
    Xu, Yuejin
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (04): : A1545 - A1570
  • [38] A Rectangular Finite Volume Element Method for a Semilinear Elliptic Equation
    Zhiguang Xiong
    Yanping Chen
    [J]. Journal of Scientific Computing, 2008, 36 : 177 - 191
  • [39] A TRIANGULAR FINITE VOLUME ELEMENT METHOD FOR A SEMILINEAR ELLIPTIC EQUATION
    Xiong, Zhiguang
    Chen, Yanping
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2014, 32 (02) : 152 - 168
  • [40] Unconditional error analysis of linearized BDF2 mixed virtual element method for semilinear parabolic problems on polygonal meshes
    Liu, Wanxiang
    Chen, Yanping
    Zhou, Jianwei
    Liang, Qin
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 446