OSCILLATION CRITERIA FOR HIGHER ORDER NONLINEAR DELAY DYNAMIC EQUATIONS ON TIME SCALES

被引:5
|
作者
Wu, Xin [1 ]
Sun, Taixiang [1 ]
机构
[1] Guangxi Univ Finance & Econ, Coll Informat & Stat, Nanning 530003, Guangxi, Peoples R China
关键词
oscillation; dynamic equation; time scale;
D O I
10.1515/ms-2015-0166
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the oscillation criteria of the following higher order nonlinear delay dynamic equation R-n(Delta) (t, x(t)) + b(t)vertical bar R-n-1(Delta)(t, x(t))vertical bar(gamma-1) R-n-1(Delta) (t, x(t)) + q(t) f (vertical bar(tau(t))vertical bar(gamma-1) x(tau(t))) = 0 on an arbitrary time scale T with supT = infinity, where n >= 2, gamma > 0 is a constant, tau : T -> T with tau(t) <= t and lim(t ->infinity) tau(t) = infinity and R-k(t, x(t)) = {x(t), if k = 0, r(k)(t)R-k-1(Delta) (t, x(t), if 1 <= k <= n - 1, r(n)(t)vertical bar R-n-1(Delta) (t, x(t))vertical bar(gamma-1) R-n-1(Delta) (t, x(t)), if k = n, with r(k)(t) (1 <= k <= n) are positive rd-continuous functions. We give sufficient conditions under which every solution of this equation is either oscillatory or tends to zero. (C) 2016 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:627 / 650
页数:24
相关论文
共 50 条
  • [31] Oscillation of Second-Order Nonlinear Delay Dynamic Equations on Time Scales
    Agwa, H. A.
    Khodier, A. M. M.
    Hassan, Heba A.
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 2011
  • [32] Oscillation of second-order nonlinear delay dynamic equations on time scales
    Zhang, BG
    Zhu, SL
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (04) : 599 - 609
  • [33] OSCILLATION CRITERIA FOR SECOND ORDER NONLINEAR NEUTRAL DYNAMIC EQUATIONS ON TIME SCALES
    Thandapani, E.
    Piramanantham, V.
    TAMKANG JOURNAL OF MATHEMATICS, 2012, 43 (01): : 109 - 122
  • [35] Oscillation for Second-Order Nonlinear Delay Dynamic Equations on Time Scales
    Han, Zhenlai
    Li, Tongxing
    Sun, Shurong
    Zhang, Chenghui
    ADVANCES IN DIFFERENCE EQUATIONS, 2009,
  • [36] Oscillation for third-order nonlinear delay dynamic equations on time scales
    Liu, Shouhua
    Zhang, Quanxin
    Gao, Li
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS II, PTS 1 AND 2, 2014, 475-476 : 1578 - 1582
  • [37] Oscillation Criteria for Second-order Nonlinear Dynamic Equations on Time Scales
    Cao, Fengjuan
    Han, Zhenlai
    PROCEEDINGS OF THE 6TH CONFERENCE OF BIOMATHEMATICS, VOLS I AND II: ADVANCES ON BIOMATHEMATICS, 2008, : 139 - 142
  • [38] Oscillation Criteria for Fourth-Order Nonlinear Dynamic Equations on Time Scales
    Wu, Xin
    Sun, Taixiang
    Xi, Hongjian
    Chen, Changhong
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [39] Oscillation criteria for higher order nonlinear dynamic equations
    Grace, Said R.
    Hassan, Taher S.
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (14-15) : 1659 - 1673
  • [40] Oscillation for Higher Order Dynamic Equations on Time Scales
    Sun, Taixiang
    He, Qiuli
    Xi, Hongjian
    Yu, Weiyong
    ABSTRACT AND APPLIED ANALYSIS, 2013,