POSITIVE UPPER DENSITY POINTS AND CHAOS

被引:0
|
作者
Yin Jiandong [1 ]
Zhou Zouling [2 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Peoples R China
[2] Sun Yat Sen Univ, Lingnan Coll, Guangzhou 510275, Guangdong, Peoples R China
关键词
measure center; E-system; chaos; DEVANEYS CHAOS; STOCHASTIC PROPERTIES; PERIODIC POINT;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we mainly investigate the problem of complexity for a topologically dynamical system (X, f). We prove that f has a full measure center if there exists a countable base {U-i}(i=0)(infinity) of X satisfying that, for any i, there is y in X such that N(y, U-i) is a positive Banach upper density set. Moreover, we consider the chaotic property of (X, f). We show that such a system is chaotic in the sense of Takens-Ruelle if it is transitive but not minimal.
引用
收藏
页码:1408 / 1414
页数:7
相关论文
共 50 条
  • [21] Banach upper density recurrent points of C0-flows
    Qi Yan
    Jian Dong Yin
    Ballesteros Marnellie
    Wei Ling Wu
    Acta Mathematica Sinica, English Series, 2016, 32 : 1312 - 1322
  • [22] ON POINTS WITH POSITIVE DENSITY OF THE DIGIT SEQUENCE IN INFINITE ITERATED FUNCTION SYSTEMS
    Zhang, Zhen-Liang
    Cao, Chun-Yun
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 102 (03) : 435 - 443
  • [23] Nilfactors of ℝm and configurations in sets of positive upper density in ℝm
    Tamar Ziegler
    Journal d’Analyse Mathématique, 2006, 99 : 249 - 266
  • [24] ON SOLVABILITY OF CERTAIN EQUATIONS IN SEQUENCES OF POSITIVE UPPER LOGARITHMIC DENSITY
    ERDOS, P
    SARKOZI, A
    SZEMERED.E
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1968, 43 (169P): : 71 - &
  • [25] ITERATED COMPOSITIONS OF LINEAR OPERATIONS ON SETS OF POSITIVE UPPER DENSITY
    Hegyvari, Norbert
    Hennecart, Francois
    Plagne, Alain
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2009, 5 (06) : 981 - 997
  • [26] Polynomial configurations in sets of positive upper density over local fields
    Bardestani, Mohammad
    Mallahi-Karai, Keivan
    JOURNAL D ANALYSE MATHEMATIQUE, 2020, 142 (01): : 71 - 103
  • [27] Polynomial configurations in sets of positive upper density over local fields
    Mohammad Bardestani
    Keivan Mallahi-Karai
    Journal d'Analyse Mathématique, 2020, 142 : 71 - 103
  • [28] Boxes, extended boxes and sets of positive upper density in the Euclidean space
    Durcik, Polona
    Kovac, Vjekoslav
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2021, 171 (03) : 481 - 502
  • [29] Properties of Shadowable Points: Chaos and Equicontinuity
    Kawaguchi, Noriaki
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (04): : 599 - 622
  • [30] Properties of Shadowable Points: Chaos and Equicontinuity
    Noriaki Kawaguchi
    Bulletin of the Brazilian Mathematical Society, New Series, 2017, 48 : 599 - 622