Measurement-device-independent quantum secret sharing with hyper-encoding

被引:32
|
作者
Ju, Xing-Xing [1 ,4 ]
Zhong, Wei [4 ]
Sheng, Yu-Bo [2 ,3 ,4 ]
Zhou, Lan [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Sci, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210023, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Coll Flexible Elect Future Technol, Nanjing 210023, Peoples R China
[4] Nanjing Univ Posts & Telecommun, Inst Quantum Informat & Technol, Nanjing 210003, Peoples R China
基金
中国国家自然科学基金;
关键词
measurement-device-independent quantum secret sharing; hyper-encoding technology; cross-Kerr nonlinearity; hyper-entangled Greenberger-Horne-Zeilinger state analysis; KEY DISTRIBUTION; COMMUNICATION;
D O I
10.1088/1674-1056/ac70bb
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum secret sharing (QSS) is a typical multi-party quantum communication mode, in which the key sender splits a key into several parts and the participants can obtain the key by cooperation. Measurement-device-independent quantum secret sharing (MDI-QSS) is immune to all possible attacks from measurement devices and can greatly enhance QSS's security in practical applications. However, previous MDI-QSS's key generation rate is relatively low. Here, we adopt the polarization-spatial-mode hyper-encoding technology in the MDI-QSS, which can increase single photon's channel capacity. Meanwhile, we use the cross-Kerr nonlinearity to realize the complete hyper-entangled Greenberger-Horne-Zeilinger state analysis. Both above factors can increase MDI-QSS's key generation rate by about 10(3). The proposed hyper-encoded MDI-QSS protocol may be useful for future multiparity quantum communication applications.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Measurement-Device-Independent Quantum Key Distribution
    Lo, Hoi-Kwong
    Curty, Marcos
    Qi, Bing
    PHYSICAL REVIEW LETTERS, 2012, 108 (13)
  • [42] Measurement-Device-Independent Quantum Key Distribution
    Kulik, S. P.
    Molotkov, S. N.
    JETP LETTERS, 2023, 118 (01) : 74 - 82
  • [43] Measurement-device-independent quantum key distribution with quantum memories
    Abruzzo, Silvestre
    Kampermann, Hermann
    Bruss, Dagmar
    PHYSICAL REVIEW A, 2014, 89 (01)
  • [44] Measurement-device-independent quantum communication without encryption
    Peng-Hao Niu
    Zeng-Rong Zhou
    Zai-Sheng Lin
    Yu-Bo Sheng
    Liu-Guo Yin
    Gui-Lu Long
    Science Bulletin, 2018, 63 (20) : 1345 - 1350
  • [45] Entanglement Measurement-Device-Independent Quantum Key Distribution
    Alshowkan, Muneer
    Elleithy, Khaled
    2017 IEEE LONG ISLAND SYSTEMS, APPLICATIONS AND TECHNOLOGY CONFERENCE (LISAT), 2017,
  • [46] Measurement-device-independent quantum dialogue based on hyperentanglement
    Kai-Qi Han
    Lan Zhou
    Wei Zhong
    Yu-Bo Sheng
    Quantum Information Processing, 2021, 20
  • [47] Measurement-device-independent quantum secure direct communication
    Zhou, ZengRong
    Sheng, YuBo
    Niu, PengHao
    Yin, LiuGuo
    Long, GuiLu
    Hanzo, Lajos
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2020, 63 (03)
  • [48] Experimental measurement-device-independent quantum digital signatures
    G. L. Roberts
    M. Lucamarini
    Z. L. Yuan
    J. F. Dynes
    L. C. Comandar
    A. W. Sharpe
    A. J. Shields
    M. Curty
    I. V. Puthoor
    E. Andersson
    Nature Communications, 8
  • [49] Experimental Measurement-Device-Independent Quantum Key Distribution
    Liu, Yang
    Chen, Teng-Yun
    Wang, Liu-Jun
    Liang, Hao
    Shentu, Guo-Liang
    Wang, Jian
    Cui, Ke
    Yin, Hua-Lei
    Liu, Nai-Le
    Li, Li
    Ma, Xiongfeng
    Pelc, Jason S.
    Fejer, M. M.
    Peng, Cheng-Zhi
    Zhang, Qiang
    Pan, Jian-Wei
    PHYSICAL REVIEW LETTERS, 2013, 111 (13)
  • [50] Measurement-device-independent mutual quantum entity authentication
    Choi, Ji-Woong
    Kang, Min-Sung
    Park, Chang Hoon
    Yang, Hyung-Jin
    Han, Sang-Wook
    QUANTUM INFORMATION PROCESSING, 2021, 20 (04)