FIXED-PARAMETER TRACTABILITY OF MULTICUT PARAMETERIZED BY THE SIZE OF THE CUTSET

被引:55
|
作者
Marx, Daniel [1 ]
Razgon, Igor [2 ]
机构
[1] Hungarian Acad Sci MTA SZTAKI, Inst Comp Sci & Control, Budapest, Hungary
[2] Univ London, Dept Comp Sci & Informat Syst, Birkbeck, London, England
基金
欧洲研究理事会;
关键词
parameterized complexity; graph separation problems; multicut; ALGORITHMS; GRAPH; COMPLEXITY; HARDNESS;
D O I
10.1137/110855247
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given an undirected graph G, a collection {(s(1), t(1)),..., (s(k), t(k))} of pairs of vertices, and an integer p, the EDGE MULTICUT problem asks if there is a set S of at most p edges such that the removal of S disconnects every s(i) from the corresponding t(i). VERTEX MULTICUT is the analogous problem where S is a set of at most p vertices. Our main result is that both problems can be solved in time 2(O)(p(3))center dot n(O(1)), i.e., fixed-parameter tractable parameterized by the size p of the cutset in the solution. By contrast, it is unlikely that an algorithm with running time of the form f(p)center dot n(O(1)) exists for the directed version of the problem, as we show it to be W[1]-hard parameterized by the size of the cutset.
引用
收藏
页码:355 / 388
页数:34
相关论文
共 50 条
  • [1] Fixed-Parameter Tractability of Multicut Parameterized by the Size of the Cutset
    Marx, Daniel
    Razgon, Igor
    STOC 11: PROCEEDINGS OF THE 43RD ACM SYMPOSIUM ON THEORY OF COMPUTING, 2011, : 469 - 478
  • [2] FIXED-PARAMETER TRACTABILITY OF DIRECTED MULTIWAY CUT PARAMETERIZED BY THE SIZE OF THE CUTSET
    Chitnis, Rajesh
    Hajiaghayi, Mohammadtaghi
    Marx, Daniel
    SIAM JOURNAL ON COMPUTING, 2013, 42 (04) : 1674 - 1696
  • [3] Fixed-parameter tractability of Directed Multicut with three terminal pairs parameterized by the size of the cutset: twin-width meets flow-augmentation
    Hatzel, Meike
    Jaffke, Lars
    Limas, Paloma T.
    Masarik, Toma
    Pilipczuk, Marcin
    Sharma, Roohani
    Sorge, Manuel
    PROCEEDINGS OF THE 2023 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2023, : 3229 - 3244
  • [4] Fixed-Parameter Tractability of Multicut in Directed Acyclic Graphs
    Kratsch, Stefan
    Pilipczuk, Marcin
    Pilipczuk, Michal
    Wahlstroem, Magnus
    AUTOMATA, LANGUAGES, AND PROGRAMMING, ICALP 2012 PT I, 2012, 7391 : 581 - 593
  • [5] Fixed-parameter tractability and data reduction for multicut in trees
    Guo, J
    Niedermeier, R
    NETWORKS, 2005, 46 (03) : 124 - 135
  • [6] FIXED-PARAMETER TRACTABILITY OF MULTICUT IN DIRECTED ACYCLIC GRAPHS
    Kratsch, Stefan
    Pilipczuk, Marcin
    Pilipczuk, Michal
    Wahlstroem, Magnus
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) : 122 - 144
  • [7] On the fixed-parameter tractability of parameterized model-checking problems
    Stewart, Iain A.
    INFORMATION PROCESSING LETTERS, 2008, 106 (01) : 33 - 36
  • [8] Parameterized Complexity and Fixed-Parameter Tractability of Description Logic Reasoning
    Motik, Boris
    LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING (LPAR-18), 2012, 7180 : 13 - 14
  • [9] Fixed-parameter tractability
    Samer, Marko
    Szeider, Stefan
    Frontiers in Artificial Intelligence and Applications, 2009, 185 (01) : 425 - 454
  • [10] Scheduling and fixed-parameter tractability
    Mnich, Matthias
    Wiese, Andreas
    MATHEMATICAL PROGRAMMING, 2015, 154 (1-2) : 533 - 562