D-branes in orbifold singularities and equivariant K-theory

被引:21
|
作者
García-Compeán, H
机构
[1] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
[2] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Mexico City 07000, DF, Mexico
关键词
D-branes; orbifolds; BPS states; K-theory;
D O I
10.1016/S0550-3213(99)00270-9
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The study of brane-antibrane configurations in string theory leads to the understanding of supersymmetric Dp-branes as the bound states of higher dimensional branes. Configurations of pairs of brane-antibranes admit in a natural way a description in terms of K-theory. We analyze configurations of brane-antibranes at fixed point orbifold singularities in terms of equivariant K-theory as recently suggested by Witten. Type I and IIB fivebranes and small instantons on ALE singularities are described in K-theoretical terms and their relation to the Kronheimer-Nakajima construction of instantons is also provided. Finally the D-brane charge formula is reexamined in this context. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:480 / 504
页数:25
相关论文
共 50 条
  • [41] D-branes on singularities: New quivers from old
    Berenstein, D
    Jejjala, V
    Leigh, RG
    PHYSICAL REVIEW D, 2001, 64 (04):
  • [42] Equivariant eta forms and equivariant differential K-theory
    Liu, Bo
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (10) : 2159 - 2206
  • [43] Exceptional collections and D-branes probing toric singularities
    Herzog, CP
    Karp, RL
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (02):
  • [44] K-homology and D-branes
    Baum, Paul
    SUPERSTRINGS, GEOMETRY, TOPOLOGY, AND C(STAR)-ALGEBRAS, 2010, 81 : 81 - 94
  • [45] Equivariant eta forms and equivariant differential K-theory
    Bo Liu
    ScienceChina(Mathematics), 2021, 64 (10) : 2159 - 2206
  • [46] Equivariant eta forms and equivariant differential K-theory
    Bo Liu
    Science China Mathematics, 2021, 64 : 2159 - 2206
  • [47] Equivariant K-theory of quasitoric manifolds
    Dasgupta, Jyoti
    Khan, Bivas
    Uma, V.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2019, 129 (05):
  • [48] Rigidity in equivariant algebraic K-theory
    Naumann, Niko
    Ravi, Charanya
    ANNALS OF K-THEORY, 2020, 5 (01) : 141 - 158
  • [49] FORGETFUL HOMOMORPHISMS IN EQUIVARIANT K-THEORY
    MATSUNAGA, H
    MINAMI, H
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1986, 22 (01) : 143 - 150
  • [50] Equivariant K-theory of toric orbifolds
    Sarkar, Soumen
    Uma, Vikraman
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2021, 73 (03) : 735 - 752