Microstructure evolution of yttria-doped ceria in reducing atmosphere

被引:4
|
作者
Li, Zhi-Peng [1 ,2 ]
Mori, Toshiyuki [2 ]
Auchterlonie, Graeme John [3 ]
Zou, Jin [3 ,4 ]
Drennan, John [3 ]
机构
[1] Univ N Carolina, Dept Phys, Chapel Hill, NC 27599 USA
[2] Natl Inst Mat Sci, Global Res Ctr Environm & Energy Based Nanomat Sc, Tsukuba, Ibaraki 3050044, Japan
[3] Univ Queensland, Ctr Microscopy & Microanal, Brisbane, Qld 4072, Australia
[4] Univ Queensland, Div Mat, Brisbane, Qld 4072, Australia
关键词
Ceria; Electron energy loss spectroscopy; Superstructure; Solid oxide fuel cell; Transmission electron microscopy; ENERGY-LOSS SPECTROSCOPY; OXIDE FUEL-CELL; MUTUAL DIFFUSION; NONSTOICHIOMETRY; CONDUCTIVITY; ELECTROLYTE; INTERFACE;
D O I
10.1016/j.renene.2012.07.019
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The evolution of microstructures of yttria-doped ceria (YDC) upon the heating at 500 degrees C in a reducing atmosphere has been characterized. Even though obvious cracks will not appear at such a low temperature, local microstructures will change in terms of superstructure formation. Electron energy-loss near-edge structure (ELNES) analysis reveals that newly appeared superstructures formation is mainly attributed to the reduction of Ce4+ to Ce3+. Furthermore, the ELNES at the oxygen K-edge illustrates that such superstructures have enhanced oxygen vacancy ordering level, compared to non-H-2-treated YDC samples. This type of long-range ordered structure may act as trap/sink centers for mobile oxygen vacancies, the charge carrier of oxide ionic conductors, which is detrimental to solid oxide fuel cell performance. In the light of this study, it elucidates that microstructural evolution under an operating environment may be one possible reason for the degradation of the fuel cells. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:494 / 497
页数:4
相关论文
共 50 条
  • [41] Blocking grain boundaries in yttria-doped and undoped ceria ceramics of high purity
    Guo, X
    Sigle, W
    Maier, J
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2003, 86 (01) : 77 - 87
  • [42] Effects of strontium gallate addition on sintering behavior and electrical conductivity of yttria-doped ceria
    Seung-Woo Seo
    Sang-Jin Jung
    Min-Woo Park
    Seung-Min Yu
    Ki-Tae Lee
    Joo-Sin Lee
    Electronic Materials Letters, 2014, 10 : 213 - 216
  • [43] Investigation of the Ionic Conductivities of Yttria-Doped Ceria and Yttria-Stabilized Zirconia by Using the Statistical Moment Method
    Le Thu Lam
    Vu Van Hung
    Bui Duc Tinh
    Journal of the Korean Physical Society, 2019, 75 : 293 - 303
  • [44] Microstructure and ionic conductivity of freeze-dried yttria-doped zirconia
    Petot, C
    Filal, M
    Rizea, AD
    Westmacott, KH
    Laval, JY
    Lacour, C
    Ollitrault, R
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1998, 18 (10) : 1419 - 1428
  • [45] Investigation of the Ionic Conductivities of Yttria-Doped Ceria and Yttria-Stabilized Zirconia by Using the Statistical Moment Method
    Le Thu Lam
    Vu Van Hung
    Bui Duc Tinh
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2019, 75 (04) : 293 - 303
  • [46] Yttria-doped ceria anode for carbon-fueled solid oxide fuel cell
    Kulkarni, A.
    Giddey, S.
    Badwal, S. P. S.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (02) : 325 - 335
  • [47] Grain boundary blocking of ionic conductivity in nanocrystalline yttria-doped ceria thin films
    An, Jihwan
    Bae, Jiwoong
    Hong, Soonwook
    Koo, Bongjun
    Kim, Young-Beom
    Guer, Turgut M.
    Prinz, Fritz B.
    SCRIPTA MATERIALIA, 2015, 104 : 45 - 48
  • [48] Synthesis, sintering and impedance spectroscopy of 8 mol% yttria-doped ceria solid electrolyte
    Tadokoro, SK
    Porfírio, TC
    Muccillo, R
    Muccillo, ENS
    JOURNAL OF POWER SOURCES, 2004, 130 (1-2) : 15 - 21
  • [49] NiO in yttria-doped zirconia
    Linderoth, S
    Kuzjukevics, A
    PROCEEDINGS OF THE FIFTH INTERNATIONAL SYMPOSIUM ON SOLID OXIDE FUEL CELLS (SOFC-V), 1997, 97 (40): : 1076 - 1085
  • [50] Yttria-doped ceria anode for carbon-fueled solid oxide fuel cell
    A. Kulkarni
    S. Giddey
    S. P. S. Badwal
    Journal of Solid State Electrochemistry, 2015, 19 : 325 - 335