ON HIGH DIMENSIONAL MAXIMAL OPERATORS

被引:3
|
作者
Aldaz, J. M. [1 ]
Perez Lazaro, J. [2 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[2] Univ La Rioja, Dept Matemat & Comp, Logrono 26004, La Rioja, Spain
来源
关键词
Maximal operators; weak type bounds; radial measures; HARDY-LITTLEWOOD; 1,1 BOUNDS; CONSTANT; BEHAVIOR;
D O I
10.15352/bjma/1363784233
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we describe some recent advances in the area of maximal function inequalities. We also study the behaviour of the centered Hardy-Littlewood maximal operator associated to certain families of doubling, radial decreasing measures, and acting on radial functions. In fact, we precisely determine when the weak type (1,1) bounds are uniform in the dimension.
引用
收藏
页码:225 / 243
页数:19
相关论文
共 50 条
  • [21] On the Boundedness Problem of Maximal Operators
    Usmanov, S. E.
    RUSSIAN MATHEMATICS, 2022, 66 (04) : 74 - 83
  • [22] DOMAINS OF MAXIMAL MONOTONE OPERATORS
    WEYER, J
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 82 (03) : 491 - 493
  • [23] Maximal operators on hyperbolic triangles
    Branchereau, Romain
    Bronstein, Samuel
    Gauvan, Anthony
    COLLECTANEA MATHEMATICA, 2025, 76 (01) : 51 - 63
  • [24] On maximal operators along surfaces
    Hung Viet Le
    Integral Equations and Operator Theory, 2000, 37 : 64 - 71
  • [25] Regular Maximal Monotone Operators
    Andrei Verona
    Maria E. Verona
    Set-Valued Analysis, 1998, 6 : 303 - 312
  • [26] ON THE HARMONIC AND GEOMETRIC MAXIMAL OPERATORS
    Duffee, Linden Anne
    Moen, Kabe
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (01): : 265 - 286
  • [27] A Characterization of Maximal Monotone Operators
    Loehne, Andreas
    SET-VALUED ANALYSIS, 2008, 16 (5-6): : 693 - 700
  • [28] Beyond Local Maximal Operators
    Hannes Luiro
    Antti V. Vähäkangas
    Potential Analysis, 2017, 46 : 201 - 226
  • [29] Multilinear Cesaro maximal operators
    Bernardis, A. L.
    Crescimbeni, R.
    Martin-Reyes, F. J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 397 (01) : 191 - 204
  • [30] The spectral theory of maximal operators
    Plessner, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1939, 22 : 227 - 230