Sieve-Type Lower Bounds for the Mahler Measure of Polynomials on Subarcs

被引:8
|
作者
Erdelyi, Tamas [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
Large sieve inequalities; Mahler measure; constrained coefficients; Fekete polynomials; Littlewood polynomials; RESTRICTED COEFFICIENTS; INEQUALITIES; ZEROS;
D O I
10.1007/BF03321798
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove sieve-type lower bounds for the Mahler measure of polynomials on sub arcs of the unit circle of the complex plane. This is then applied to give an essentially sharp lower bound for the Mahler measure of the Fekete polynomials on subarcs.
引用
收藏
页码:213 / 228
页数:16
相关论文
共 50 条
  • [31] LOWER BOUNDS FOR THE GREATEST ABSOLUTE VALUE OF CONJUGATES AND FOR THE MAHLER MEASURE OF SOME ALGEBRAIC-INTEGERS
    LANGEVIN, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 303 (12): : 523 - 526
  • [32] Lower bounds for discriminants of polynomials
    Kim, Kwang-Seob
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (10) : 2765 - 2772
  • [33] LOWER BOUNDS FOR THE COMPLEXITY OF POLYNOMIALS
    STOSS, HJ
    THEORETICAL COMPUTER SCIENCE, 1989, 64 (01) : 15 - 23
  • [34] Quantum lower bounds by polynomials
    Beals, R
    Buhrman, H
    Cleve, R
    Mosca, M
    De Wolf, R
    JOURNAL OF THE ACM, 2001, 48 (04) : 778 - 797
  • [35] Quantum lower bounds by polynomials
    Beals, R
    Buhrman, H
    Cleve, R
    Mosca, M
    de Wolf, R
    39TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1998, : 352 - 361
  • [36] Integer transfinite diameter and polynomials with small Mahler measure
    Flammang, Valerie
    Rhin, Georges
    Sac-Epee, Jean-Marc
    MATHEMATICS OF COMPUTATION, 2006, 75 (255) : 1527 - 1540
  • [37] Root statistics of random polynomials with bounded Mahler measure
    Sinclair, Christopher D.
    Yattselev, Maxim L.
    ADVANCES IN MATHEMATICS, 2015, 272 : 124 - 199
  • [38] LOWER BOUNDS AND UPPER-BOUNDS FOR CHROMATIC POLYNOMIALS
    DOHMEN, K
    JOURNAL OF GRAPH THEORY, 1993, 17 (01) : 75 - 80
  • [39] AVERAGE MAHLER'S MEASURE AND Lp NORMS OF UNIMODULAR POLYNOMIALS
    Choi, Kwok-Kwong Stephen
    Mossinghoff, Michael J.
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 252 (01) : 31 - 50
  • [40] Two-variable polynomials with dynamical Mahler measure zero
    Carter, Annie
    Lalin, Matilde
    Manes, Michelle
    Miller, Alison Beth
    Mocz, Lucia
    RESEARCH IN NUMBER THEORY, 2022, 8 (02)