LiCoO2-catalyzed electrochemical oxidation of Li2CO3

被引:30
|
作者
Fan, Lijuan [1 ,2 ,3 ,4 ]
Tang, Daichun [5 ]
Wang, Deyu [6 ]
Wang, Zhaoxiang [1 ,2 ,3 ,4 ]
Chen, Liquan [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Key Lab Renewable Energy, POB 603, Beijing 100190, Peoples R China
[2] Beijing Key Lab New Energy Mat & Devices, POB 603, Beijing 100190, Peoples R China
[3] Beijing Natl Lab Condensed Matter Phys, POB 603, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Inst Phys, POB 603, Beijing 100190, Peoples R China
[5] Ningde Contemporary Amperex Technol Co Ltd CATL, Div Elect Vehicle Cells, Ningde 352100, Peoples R China
[6] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
spinel LiCoO2; catalyst; Li2CO3; electrochemical oxidation; battery; LITHIUM COBALT OXIDE; AIR BATTERY; STRUCTURAL-PROPERTIES; OXYGEN EVOLUTION; LICOO2; ELECTROLYTE; CATHODE; PERFORMANCE; STABILITY; CARBONATE;
D O I
10.1007/s12274-016-1259-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium carbonate (Li2CO3) is very common in various types of lithium (Li) batteries. As an insulating by-product of the oxygen reduction reaction on the cathode of a Li-air battery, it cannot be decomposed below 4.75 V (vs. Li+/Li) during recharge and leads to a large polarization, low coulombic efficiency, and low energy conversion efficiency of the battery. On the other hand, more than 10% of the Li ions from the cathode material are consumed during chemical formation of a Li-ion battery, resulting in low coulombic efficiency and/or energy density. Consequently, lithium compensation becomes essential to realize Li-ion batteries with a higher energy density and longer cycle life. Therefore, reducing the oxidation potential of Li2CO3 is significantly important. To address these issues, we show that the addition of nanoscaled LiCoO2 can effectively lower this potential to 4.25 V. On the basis of physical characterization and electrochemical evaluation, we propose the oxidization mechanism of Li2CO3. These findings will help to decrease the polarization of Li-air batteries and provide an effective strategy for efficient Li compensation for Li-ion batteries, which can significantly improve their energy density and increase their energy conversion efficiency and cycle life.
引用
收藏
页码:3903 / 3913
页数:11
相关论文
共 50 条
  • [21] The accumulation of Li2CO3 in a Li-O2 battery with dual mediators
    Jenkins, Max
    Dewar, Daniel
    Nimmo, Tammy
    Chau, Chloe
    Gao, Xiangwen
    Bruce, Peter G.
    FARADAY DISCUSSIONS, 2024, 248 (00) : 318 - 326
  • [22] Processing of zinnwaldite waste to obtain Li2CO3
    Jandova, J.
    Dvorak, P.
    Vu, Hong N.
    HYDROMETALLURGY, 2010, 103 (1-4) : 12 - 18
  • [23] Short process for Li2CO3 synthesis and spent LiCoO2 remediation via Glycine-LiOH slurry electrolysis
    Hu, Ling
    Shu, Jiancheng
    Han, Yunhui
    Chen, Shaoqin
    Zeng, Xiangfei
    Liang, Qian
    Zhao, Zhisheng
    Long, Tao
    Luo, Ying
    Yu, Xi
    Han, Junwei
    Wu, Xiongwei
    Zeng, Xianxiang
    Chen, Mengjun
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 357
  • [24] Chemical vs Electrochemical Formation of Li2CO3 as a Discharge Product in Li-O2/CO2 Batteries by Controlling the Superoxide Intermediate
    Yin, Wei
    Grimaud, Alexis
    Lepoivre, Florent
    Yang, Chunzhen
    Tarascon, Jean Marie
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (01): : 214 - 222
  • [25] Conditions of stability for (Li2CO3 + Li2O) melts in air
    Kaplan, Valery
    Wachtel, Ellen
    Lubomirsky, Igor
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2011, 43 (11): : 1623 - 1627
  • [26] Processing of spent Li/MnO2 batteries to obtain Li2CO3
    Kondas, J.
    Jandova, J.
    Nemeckova, M.
    HYDROMETALLURGY, 2006, 84 (3-4) : 247 - 249
  • [27] Li2TiO3 pebbles reprocessing, recovery of 6Li as Li2CO3
    Alvani, C
    Casadio, S
    Contini, V
    Di Bartolomeo, A
    Lulewicz, JD
    Roux, N
    CBBI-10: PROCEEDINGS OF THE 10TH INTERNATIONAL WORKSHOP ON CERAMIC BREEDER BLANKET INTERACTIONS, 2002, 6720 : 57 - 65
  • [28] Stability of Li2CO3 in cathode of lithium ion battery and its influence on electrochemical performance
    Bi, Yujing
    Wang, Tao
    Liu, Meng
    Du, Rui
    Yang, Wenchao
    Liu, Zixuan
    Peng, Zhe
    Liu, Yang
    Wang, Deyu
    Sun, Xueliang
    RSC ADVANCES, 2016, 6 (23) : 19233 - 19237
  • [29] PHASE EQUILIBRIUM IN SYSTEM (LiF)2 - Li2CO3 - Li2SO4
    Verdieva, Z. N.
    Alkhasov, A. B.
    Verdiev, N. N.
    Rabadanov, G. A.
    Arbukhanova, P. A.
    Iskenderov, E. G.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA, 2019, 62 (01): : 20 - 25
  • [30] Study of Speciation and Transport Properties for Different Compositions of Carbonates in Li2CO3 -Na2CO3 and Li2CO3 -K2CO3 Binary Systems at High Temperature in Molten State
    Zhadan, Antonii
    Carof, Antoine
    Sarou-Kanian, Vincent
    del Campo, Leire
    Cosson, Lionel
    Vuilleumier, Rodolphe
    Malki, Mohammed
    Bessada, Catherine
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (23): : 11186 - 11194