Surface sampling and the intrinsic Voronoi diagram

被引:21
|
作者
Dyer, Ramsay [1 ]
Zhang, Hao [1 ]
Moller, Torsten [1 ]
机构
[1] Simon Fraser Univ, Sch Comp Sci, GrUVi Lab, Burnaby, BC V5A 1S6, Canada
关键词
D O I
10.1111/j.1467-8659.2008.01279.x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We develop adaptive sampling criteria which guarantee a topologically faithful mesh and demonstrate an improvement and simplification over earlier results, albeit restricted to 2D surfaces. These sampling criteria are based on functions defined by intrinsic properties of the surface: the strong convexity, radius and the injectivity radius. We establish inequalities that relate these functions to the local feature size, thus enabling a comparison between the demands of the intrinsic sampling criteria and those based on Euclidean distances and the medial axis.
引用
收藏
页码:1393 / 1402
页数:10
相关论文
共 50 条
  • [21] The graph Voronoi diagram with applications
    Erwig, M
    NETWORKS, 2000, 36 (03) : 156 - 163
  • [22] Optical generation of Voronoi diagram
    Giavazzi, F.
    Cerbino, R.
    Mazzoni, S.
    Giglio, M.
    Vailati, A.
    OPTICS EXPRESS, 2008, 16 (07) : 4819 - 4823
  • [23] Voronoi diagram in the flow field
    Nishida, T
    Sugihara, K
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2003, 2906 : 26 - 35
  • [24] Voronoi diagram and microstructure of weldment
    Jungho Cho
    Journal of Mechanical Science and Technology, 2015, 29 : 371 - 374
  • [25] Voronoi Diagram and Microstructure of Weldment
    Cho, Jungho
    Choi, Min
    UBIQUITOUS COMPUTING APPLICATION AND WIRELESS SENSOR, 2015, 331 : 1 - 9
  • [26] The Voronoi Diagram of Three Lines
    Everett, Hazel
    Lazard, Daniel
    Lazard, Sylvain
    El Din, Mohab Safey
    DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 42 (01) : 94 - 130
  • [27] The Voronoi Diagram of Three Lines
    Hazel Everett
    Daniel Lazard
    Sylvain Lazard
    Mohab Safey El Din
    Discrete & Computational Geometry, 2009, 42 : 94 - 130
  • [28] Voronoi diagram with visual restriction
    Fan, Chenglin
    Luo, Jun
    Wang, Wencheng
    Zhu, Binhai
    THEORETICAL COMPUTER SCIENCE, 2014, 532 : 31 - 39
  • [30] The Voronoi Diagram of Curved Objects
    Helmut Alt
    Otfried Cheong
    Antoine Vigneron
    Discrete & Computational Geometry, 2005, 34 : 439 - 453