A Simple Method of Determining Cloud-Masks and Cloud-Shadow-Masks From Satellite Imagery

被引:2
|
作者
Cucu-Dumitrescu, Catalin [1 ]
机构
[1] Adv Studies & Res Ctr, Bucharest 020042, Romania
关键词
Cloud-mask; cloud-shadow-mask; satellite image segmentation;
D O I
10.1109/LGRS.2013.2244842
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter presents a technique to derive cloud- and shadow-masks from satellite images. The technique is based on a mutual confirmation algorithm that uses all available solar bands, but no thermal infrared bands. The process of mutual confirmation consists of first searching and then identifying partial geometrical overlap between first-guess (preliminary) bright (cloud candidates) and associated dark (cloud shadow candidates) pixels in the image. The thresholds needed for the algorithm to operate are adjusted dynamically and are scene dependent, but need no additional information about radiometric calibration or solar geometry. The algorithm's success rate (percentage of correct classification compared to a manual/visual mask) when applied on a handful of Landsat-5 scenes is found to exceed 95% for cloud pixels and 90% for shadow pixels.
引用
收藏
页码:10 / 13
页数:4
相关论文
共 50 条
  • [21] Development of Cloud Detection Method Considering Radiometric Characteristics of Satellite Imagery
    Seo, Won-Woo
    Kang, Hongki
    Yoon, Wansang
    Lim, Pyung-Chae
    Rhee, Sooahm
    Kim, Taejung
    KOREAN JOURNAL OF REMOTE SENSING, 2023, 39 (06) : 1211 - 1224
  • [22] A method of cloud detection from satellite data
    A. A. Kostornaya
    E. I. Saprykin
    M. G. Zakhvatov
    Yu. V. Tokareva
    Russian Meteorology and Hydrology, 2017, 42 : 753 - 758
  • [23] A method of cloud detection from satellite data
    Kostornaya, A. A.
    Saprykin, E. I.
    Zakhvatov, M. G.
    Tokareva, Yu. V.
    RUSSIAN METEOROLOGY AND HYDROLOGY, 2017, 42 (12) : 753 - 758
  • [24] Validation of Copernicus Sentinel-2 Cloud Masks Obtained from MAJA, Sen2Cor, and FMask Processors Using Reference Cloud Masks Generated with a Supervised Active Learning Procedure
    Baetens, Louis
    Desjardins, Camille
    Hagolle, Olivier
    REMOTE SENSING, 2019, 11 (04)
  • [25] Cloud Removal From Optical Satellite Imagery With SAR Imagery Using Sparse Representation
    Huang, Bo
    Li, Ying
    Han, Xiaoyu
    Cui, Yuanzheng
    Li, Wenbo
    Li, Rongrong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (05) : 1046 - 1050
  • [26] SMART LAND USE MASKS : A SIMPLE AND ROBUST APPROACH TO PRODUCE LOW/HIGH VEGETATION MASKS FROM A SINGLE HIGH RESOLUTION SATELLITE IMAGE
    Tanguy, Yannick
    Raille, Celine
    Buffe, Fabrice
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 4164 - 4168
  • [27] SEMI-AUTOMATED CLOUD/SHADOW REMOVAL AND LAND COVER CHANGE DETECTION USING SATELLITE IMAGERY
    Sah, A. K.
    Sah, B. P.
    Honji, K.
    Kubo, N.
    Senthil, S.
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION VII, 2012, 39 (B7): : 335 - 340
  • [28] RETRIEVAL OF CLOUD COVER FROM SATELLITE IMAGERY DATA - A STATISTICAL APPROACH
    MOLNAR, G
    COAKLEY, JA
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1985, 90 (D7) : 2960 - 2970
  • [29] ON THE BISPECTRAL METHOD FOR CLOUD PARAMETER DETERMINATION FROM SATELLITE VISSR DATA - SEPARATING BROKEN CLOUD AND SEMITRANSPARENT CLOUD
    PLATT, CMR
    JOURNAL OF CLIMATE AND APPLIED METEOROLOGY, 1983, 22 (03): : 429 - 439
  • [30] TOTAL VARIATION REGULARIZED LOW-RANK SPARSITY DECOMPOSITION FOR BLIND CLOUD AND CLOUD SHADOW REMOVAL FROM MULTITEMPORAL IMAGERY
    Chen, Yong
    He, Wei
    Yokoya, Naoto
    Huang, Ting-Zhu
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1970 - 1973