ON THE SUM OF THE POWERS OF DISTANCE SIGNLESS LAPLACIAN EIGENVALUES OF GRAPHS

被引:4
|
作者
Pirzada, S. [1 ]
Ganie, Hilal A. [1 ]
Alhevaz, A. [2 ]
Baghipur, M. [3 ]
机构
[1] Univ Kashmir, Dept Math, Srinagar, India
[2] Shahrood Univ Technol, Fac Math Sci, POB 316-3619995161, Shahrood, Iran
[3] Univ Hormozgon, Dept Math, POB 3995, Bandar Abbas, Iran
来源
关键词
Graph; distance signless Laplacian matrix; distance signless Laplacian eigenvalues; transmission regular; ENERGY-LIKE INVARIANT; MATRIX;
D O I
10.1007/s13226-020-0455-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected graph with n vertices, m edges and having distance signless Laplacian eigenvalues rho(1) >= rho(2) >= ... >= rho(n) >= 0. For any real number alpha not equal 0, let m(alpha) (G) = Sigma(n)(i=1) rho(alpha)(i) be the sum of alpha th powers of the distance signless Laplacian eigenvalues of the graph G. In this paper, we obtain various bounds for the graph invariant m(alpha)(G), which connects it with different parameters associated to the structure of the graph G. We also obtain various bounds for the quantity DEL(G), the distance signless Laplacian-energy-like invariant of the graph G. These bounds improve some previously known bounds. We also pose some extremal problems about DEL(G).
引用
收藏
页码:1143 / 1163
页数:21
相关论文
共 50 条
  • [21] Bounding the sum of powers of the Laplacian eigenvalues of graphs
    Xiao-dan Chen
    Jian-guo Qian
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2011, 26 : 142 - 150
  • [22] On the Sum of Powers of Normalized Laplacian Eigenvalues of Graphs
    Bozkurt, S. Burcu
    Bozkurt, Durmus
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2012, 68 (03) : 917 - 930
  • [23] A note on sum of powers of the Laplacian eigenvalues of graphs
    Liu, Muhuo
    Liu, Bolian
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (03) : 249 - 252
  • [24] Characterization of extremal graphs from Laplacian eigenvalues and the sum of powers of the Laplacian eigenvalues of graphs
    Chen, Xiaodan
    Das, Kinkar Ch.
    [J]. DISCRETE MATHEMATICS, 2015, 338 (07) : 1252 - 1263
  • [25] EXTREMAL GRAPHS FOR THE SUM OF THE TWO LARGEST SIGNLESS LAPLACIAN EIGENVALUES
    Oliveira, Carla Silva
    de Lima, Leonardo
    Rama, Paula
    Carvalho, Paula
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 30 : 605 - 612
  • [26] ON SUM OF POWERS OF LAPLACIAN EIGENVALUES AND LAPLACIAN ESTRADA INDEX OF GRAPHS
    Zhou, Bo
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2009, 62 (03) : 611 - 619
  • [27] ON THE DISTANCE AND DISTANCE SIGNLESS LAPLACIAN EIGENVALUES OF GRAPHS AND THE SMALLEST GERSGORIN DISC
    Atik, Fouzul
    Panigrahi, Pratima
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2018, 34 : 191 - 204
  • [28] Characterization of extremal graphs from distance signless Laplacian eigenvalues
    Lin, Huiqiu
    Das, Kinkar Ch.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 500 : 77 - 87
  • [29] SOME INEQUALITIES INVOLVING THE DISTANCE SIGNLESS LAPLACIAN EIGENVALUES OF GRAPHS
    Alhevaz, Abdollah
    Baghipur, Maryam
    Pirzada, Shariefuddin
    Shang, Yilun
    [J]. TRANSACTIONS ON COMBINATORICS, 2021, 10 (01) : 9 - 29
  • [30] COMPUTING THE RECIPROCAL DISTANCE SIGNLESS LAPLACIAN EIGENVALUES AND ENERGY OF GRAPHS
    Alhevaz, A.
    Baghipur, M.
    Ramane, H. S.
    [J]. MATEMATICHE, 2019, 74 (01): : 49 - 73