Hydrogen and Carbon Nanotube Production via Catalytic Decomposition of Methane

被引:2
|
作者
Deniz, Cansu
Karatepe, Nilgun
机构
关键词
Catalytic Decomposition; Hydrogen Production; CNT Production; Methane Cracking; CRACKING; NI/SIO2;
D O I
10.1117/12.2023968
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The future energy demand is expected to increase significantly due to an increasing world population and demands for higher standards of living and better air quality. Hydrogen is considered as an energy carrier because of its high conversion efficiency and low pollutant emissions. It can be produced from various sources and transformed into electricity and other energy forms with a low pollution. The catalytic decomposition of hydrocarbon has been seen as a really useful method for production of pure hydrogen and for the environmental concern. The objective of this study was to assess the impact of catalyst composition and processing parameters on COx-free hydrogen production and to produce an available solid form of co-product carbon as carbon nanotubes via catalytic decomposition of methane. The optimum experimental conditions for methane decomposition have been investigated. Fe, Co and Ni are used as catalysts (nano materials) over different substrates as SiO2 and MgO to produce hydrogen at optimum temperatures.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Hydrogen production by catalytic decomposition of methane over carbon catalysts in a fluidized bed
    Jae Uk Jung
    Wooseok Nam
    Ki June Yoon
    Gui Young Han
    Korean Journal of Chemical Engineering, 2007, 24 : 674 - 678
  • [22] Hydrogen production by catalytic decomposition of methane over carbon catalysts in a fluidized bed
    Jung, Jae Uk
    Nam, Wooseok
    Yoon, Ki June
    Han, Gui Young
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2007, 24 (04) : 674 - 678
  • [23] Screening of Ni-Cu bimetallic catalysts for hydrogen and carbon nanofilaments production via catalytic decomposition of methane
    Torres, D.
    Pinilla, J. L.
    Suelves, I
    APPLIED CATALYSIS A-GENERAL, 2018, 559 : 10 - 19
  • [24] Hydrogen and nanotube production by catalytic decomposition of ethane.
    Makkuni, A
    Panjala, D
    Shah, N
    Huffman, GP
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 224 : U581 - U581
  • [25] Reinforcing hydrogen and carbon nanotube co-production via Cr-O-Ni catalyzed methane decomposition
    Sun, Zhao
    Gong, Yunhan
    Cheng, Dongfang
    Sun, Zhiqiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (08) : 4893 - 4902
  • [26] Hydrogen production through the catalytic thermal decomposition of methane
    Unzurrunzaga, A.
    Belsue, M.
    Aragon, J.
    Perez, S.
    INGENIERIA QUIMICA, 2009, (35): : 21 - 26
  • [27] HYDROGEN PRODUCTION BY THERMO-CATALYTIC METHANE DECOMPOSITION
    Wang, Hong Yan
    Lua, Aik Chong
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON INNOVATIVE MATERIALS FOR PROCESSES IN ENERGY SYSTEMS 2010 (IMPRES2010): FOR FUEL CELLS, HEAT PUMPS AND SORPTION SYSTEMS, 2010, : 107 - 113
  • [28] Solar-Thermal Production of Graphitic Carbon and Hydrogen via Methane Decomposition
    Abuseada, Mostafa
    Wei, Chuyu
    Spearrin, R. Mitchell
    Fisher, Timothy S.
    ENERGY & FUELS, 2022, 36 (07) : 3920 - 3928
  • [29] Hydrogen production by catalytic decomposition of methane over carbon black catalyst at high temperatures
    Seung Chul Lee
    Hyung Jae Seo
    Gui Young Han
    Korean Journal of Chemical Engineering, 2013, 30 : 1716 - 1721
  • [30] Production of hydrogen and value-added carbon materials by catalytic methane decomposition: a review
    Cham Q. Pham
    Tan Ji Siang
    Ponnusamy Senthil Kumar
    Zainal Ahmad
    Leilei Xiao
    Mahadi B. Bahari
    Anh Ngoc T. Cao
    Natarajan Rajamohan
    Amjad Saleh Qazaq
    Amit Kumar
    Pau Loke Show
    Dai-Viet N. Vo
    Environmental Chemistry Letters, 2022, 20 : 2339 - 2359