On Basing Size-Verifiable One-Way Functions on NP-Hardness

被引:0
|
作者
Bogdanov, Andrej [1 ]
Brzuska, Christina [2 ,3 ]
机构
[1] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Hong Kong, Peoples R China
[2] Microsoft Res, Cambridge, England
[3] Tel Aviv Univ, IL-69978 Tel Aviv, Israel
来源
THEORY OF CRYPTOGRAPHY (TCC 2015), PT I | 2015年 / 9014卷
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove that if the hardness of inverting a size-verifiable one-way function can be based on NP-hardness via a general (adaptive) reduction, then NP subset of coAM. This claim was made by Akavia, Goldreich, Goldwasser, and Moshkovitz (STOC 2006), but was later retracted (STOC 2010).
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [41] ONE-WAY FUNCTIONS AND CIRCUIT COMPLEXITY
    BOPPANA, RB
    LAGARIAS, JC
    LECTURE NOTES IN COMPUTER SCIENCE, 1986, 223 : 51 - 65
  • [42] The existence of relativization one-way functions
    Cao, Z.
    Lü, Y.
    Shi, C.
    2001, Chinese Academy of Sciences (12):
  • [43] On One-Way Functions and Sparse Languages
    Liu, Yanyi
    Pass, Rafael
    THEORY OF CRYPTOGRAPHY, TCC 2023, PT I, 2023, 14369 : 219 - 237
  • [44] Polynomials and One-Way Functions.
    Mueller, Winfred B.
    1988, 105 (01): : 31 - 35
  • [45] Secrecy without one-way functions
    Grigoriev, Dima
    Shpilrain, Vladimir
    GROUPS COMPLEXITY CRYPTOLOGY, 2013, 5 (01) : 31 - 52
  • [46] One-Way Functions and Zero Knowledge
    Hirahara, Shuichi
    Nanashima, Mikito
    PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 1731 - 1738
  • [47] ON THE EXISTENCE OF EXTRACTABLE ONE-WAY FUNCTIONS
    Bitansky, Nir
    Canetti, Ran
    Paneth, Omer
    Rosen, Alon
    SIAM JOURNAL ON COMPUTING, 2016, 45 (05) : 1910 - 1952
  • [48] On One-way Functions and Kolmogorov Complexity
    Liu, Yanyi
    Pass, Rafael
    2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, : 1243 - 1254
  • [49] Weakly Extractable One-Way Functions
    Bitansky, Nir
    Eizenstadt, Noa
    Paneth, Omer
    THEORY OF CRYPTOGRAPHY, TCC 2020, PT I, 2020, 12550 : 596 - 626
  • [50] ONE-WAY FUNCTIONS IN COMPLEXITY THEORY
    SELMAN, AL
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 452 : 88 - 104