On Basing Size-Verifiable One-Way Functions on NP-Hardness

被引:0
|
作者
Bogdanov, Andrej [1 ]
Brzuska, Christina [2 ,3 ]
机构
[1] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Hong Kong, Peoples R China
[2] Microsoft Res, Cambridge, England
[3] Tel Aviv Univ, IL-69978 Tel Aviv, Israel
来源
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove that if the hardness of inverting a size-verifiable one-way function can be based on NP-hardness via a general (adaptive) reduction, then NP subset of coAM. This claim was made by Akavia, Goldreich, Goldwasser, and Moshkovitz (STOC 2006), but was later retracted (STOC 2010).
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [1] On basing one-way functions on NP-hardness
    MIT, Cambridge, MA, United States
    不详
    Proc. Annu. ACM Symp. Theory Comput., (701-710):
  • [2] Erratum for: On Basing One-Way Functions on NP-Hardness
    Akavia, Adi
    Goldreich, Oded
    Goldwasser, Shafi
    Moshkovitz, Dana
    STOC 2010: PROCEEDINGS OF THE 2010 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2010, : 795 - 795
  • [3] Capturing One-Way Functions via NP-Hardness of Meta-Complexity
    Hirahara, Shuichi
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 1027 - 1038
  • [4] On Basing Search SIVP on NP-Hardness
    Liu, Tianren
    THEORY OF CRYPTOGRAPHY, TCC 2018, PT I, 2018, 11239 : 98 - 119
  • [5] On Basing Private Information Retrieval on NP-Hardness
    Liu, Tianren
    Vaikuntanathan, Vinod
    THEORY OF CRYPTOGRAPHY, TCC 2016-A, PT I, 2016, 9562 : 372 - 386
  • [6] ON HARDNESS OF ONE-WAY FUNCTIONS
    WATANABE, O
    INFORMATION PROCESSING LETTERS, 1988, 27 (03) : 151 - 157
  • [7] On hardness amplification of one-way functions
    Lin, H
    Trevisan, L
    Wee, H
    THEORY OF CRYPTOGRAPHY, PROCEEDINGS, 2005, 3378 : 34 - 49
  • [8] On the complexity of parallel hardness amplification for one-way functions
    Lu, Chi-Jen
    THEORY OF CRYPTOGRAPHY, PROCEEDINGS, 2006, 3876 : 462 - 481
  • [9] On Basing One-way Permutations on NP-hard Problems under Quantum Reductions
    Chia, Nai-Hui
    Hallgren, Sean
    Song, Fang
    QUANTUM, 2020, 4
  • [10] ONE-WAY FUNCTIONS AND THE NONISOMORPHISM OF NP-COMPLETE SETS
    HARTMANIS, J
    HEMACHANDRA, LA
    THEORETICAL COMPUTER SCIENCE, 1991, 81 (01) : 155 - 163