Structural basis for recognition of diverse transcriptional repressors by the TOPLESS family of corepressors

被引:125
|
作者
Ke, Jiyuan [1 ,2 ,3 ]
Ma, Honglei [1 ,2 ,3 ]
Gu, Xin [2 ,3 ]
Thelen, Adam [2 ,3 ]
Brunzelle, Joseph S. [4 ]
Li, Jiayang [5 ,6 ]
Xu, H. Eric [1 ,2 ,3 ]
Melcher, Karsten [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Biol Sci, Shanghai Inst Mat Med, Key Lab Receptor Res,VARI SIMM Ctr,Ctr Struct & F, Shanghai 201203, Peoples R China
[2] Van Andel Res Inst, Lab Struct Sci, Grand Rapids, MI 49503 USA
[3] Van Andel Res Inst, Lab Struct Biol & Biochem, Grand Rapids, MI 49503 USA
[4] Northwestern Univ, Synchrotron Res Ctr, Life Sci Collaborat Access Team, Dept Mol Pharmacol & Biol Chem, Argonne, IL 60439 USA
[5] Chinese Acad Sci, Inst Genet & Dev Biol, State Key Lab Plant Genom, Beijing 100101, Peoples R China
[6] Chinese Acad Sci, Inst Genet & Dev Biol, Natl Ctr Plant Gene Res Beijing, Beijing 100101, Peoples R China
来源
SCIENCE ADVANCES | 2015年 / 1卷 / 06期
关键词
CO-REPRESSOR; EAR MOTIF; GROUCHO; PROTEIN; DOMAIN; ARABIDOPSIS; INTERACTS; FATE; OLIGOMERIZATION; PERCEPTION;
D O I
10.1126/sciadv.1500107
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
TOPLESS (TPL) and TOPLESS-related (TPR) proteins comprise a conserved family of plant transcriptional corepressors that are related to Tup1, Groucho, and TLE (transducin-like enhancer of split) corepressors in yeast, insects, and mammals. In plants, TPL/TPR corepressors regulate development, stress responses, and hormone signaling through interaction with small ethylene response factor-associated amphiphilic repression (EAR) motifs found in diverse transcriptional repressors. How EAR motifs can interact with TPL/TPR proteins is unknown. We confirm the amino-terminal domain of the TPL family of corepressors, which we term TOPLESS domain (TPD), as the EAR motifbinding domain. To understand the structural basis of this interaction, we determined the crystal structures of the TPD of rice (Os) TPR2 in apo (apo protein) state and in complexes with the EAR motifs from Arabidopsis NINJA (novel interactor of JAZ), IAA1 (auxin-responsive protein 1), and IAA10, key transcriptional repressors involved in jasmonate and auxin signaling. The OsTPR2 TPD adopts a new fold of nine helices, followed by a zinc finger, which are arranged into a disc-like tetramer. The EAR motifs in the three different complexes adopt a similar extended conformation with the hydrophobic residues fitting into the same surface groove of each OsTPR2 monomer. Sequence alignments and structure-based mutagenesis indicate that this mode of corepressor binding is highly conserved in a large set of transcriptional repressors, thus providing a general mechanism for gene repression mediated by the TPL family of corepressors.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family
    Zubieta, C
    Ross, JR
    Koscheski, P
    Yang, Y
    Pichersky, E
    Noel, JP
    PLANT CELL, 2003, 15 (08): : 1704 - 1716
  • [32] Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family
    Eberhard, D
    Jiménez, G
    Heavey, B
    Busslinger, M
    EMBO JOURNAL, 2000, 19 (10): : 2292 - 2303
  • [33] Structural insight into DNA recognition by bacterial transcriptional regulators of the SorC/DeoR family
    Soltysova, Marketa
    Sieglova, Irena
    Fabry, Milan
    Brynda, Jiri
    Skerlova, Jana
    Rezacova, Pavlina
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2021, 77 : 1411 - 1424
  • [34] Structural basis for antibiotic recognition by the TipA class of multidrug-resistance transcriptional regulators
    Kahmann, JD
    Sass, HJ
    Allan, MG
    Seto, H
    Thompson, CJ
    Grzesiek, S
    EMBO JOURNAL, 2003, 22 (08): : 1824 - 1834
  • [35] Structural basis for recognition of transcriptional terminator structures by ProQ/FinO domain RNA chaperones
    Hyeong Jin Kim
    Mazzen Black
    Ross A. Edwards
    Flora Peillard-Fiorente
    Rashmi Panigrahi
    David Klingler
    Reiner Eidelpes
    Ricarda Zeindl
    Shiyun Peng
    Jikun Su
    Ayat R. Omar
    Andrew M. MacMillan
    Christoph Kreutz
    Martin Tollinger
    Xavier Charpentier
    Laetitia Attaiech
    J. N. Mark Glover
    Nature Communications, 13
  • [36] Structural basis for transcriptional coactivator recognition by SMAD2 in TGF-β signaling
    Miyazono, Ken-ichi
    Ito, Tomoko
    Fukatsu, Yui
    Wada, Hikaru
    Kurisaki, Akira
    Tanokura, Masaru
    SCIENCE SIGNALING, 2020, 13 (662)
  • [37] Structural basis for recognition of transcriptional terminator structures by ProQ/FinO domain RNA chaperones
    Kim, Hyeong Jin
    Black, Mazzen
    Edwards, Ross A.
    Peillard-Fiorente, Flora
    Panigrahi, Rashmi
    Klinger, David
    Eidelpes, Reiner
    Zeindl, Ricarda
    Peng, Shiyun
    Su, Jikun
    Omar, Ayat R.
    MacMillan, Andrew M.
    Kreutz, Christoph
    Tollinger, Martin
    Charpentier, Xavier
    Attaiech, Laetitia
    Glover, J. N. Mark
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [38] Structural basis of the Sir1-origin recognition complex interaction in transcriptional silencing
    Hou, ZG
    Bernstein, DA
    Fox, CA
    Keck, JL
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (24) : 8489 - 8494
  • [39] Structural Basis of Selective Aromatic Pollutant Sensing by MopR, an NtrC Family Transcriptional Regulator
    Ray, Shamayeeta
    Panjikar, Santosh
    Anand, Ruchi
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2016, 72 : S251 - S252
  • [40] Structural basis of transcriptional activation by the OmpR/PhoB-family response regulator PmrA
    Lou, Yuan-Chao
    Huang, Hsuan-Yu
    Yeh, Hsin-Hong
    Chiang, Wei-Hung
    Chen, Chinpan
    Wu, Kuen-Phon
    NUCLEIC ACIDS RESEARCH, 2023, 51 (18) : 10049 - 10058