A Minkowski problem for electrostatic capacity

被引:105
|
作者
Jerison, D
机构
[1] Massachusetts Inst. of Technology, Cambridge, MA
关键词
D O I
10.1007/BF02547334
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:1 / 47
页数:47
相关论文
共 50 条
  • [31] THE ISOPERIMETRIC PROBLEM FOR MINKOWSKI AREA
    BUSEMANN, H
    AMERICAN JOURNAL OF MATHEMATICS, 1949, 71 (04) : 743 - 762
  • [32] The even Orlicz Minkowski problem
    Haberl, Christoph
    Lutwak, Erwin
    Yang, Deane
    Zhang, Gaoyong
    ADVANCES IN MATHEMATICS, 2010, 224 (06) : 2485 - 2510
  • [33] On the Discrete Logarithmic Minkowski Problem
    Boroczky, Karoly J.
    Hegedus, Pal
    Zhu, Guangxian
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (06) : 1807 - 1838
  • [34] The Lp Minkowski problem for torsion
    Chen, Zhengmao
    Dai, Qiuyi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 488 (01)
  • [35] The Dual Orlicz–Minkowski Problem
    Baocheng Zhu
    Sudan Xing
    Deping Ye
    The Journal of Geometric Analysis, 2018, 28 : 3829 - 3855
  • [36] On the Lp dual Minkowski problem
    Huang, Yong
    Zhao, Yiming
    ADVANCES IN MATHEMATICS, 2018, 332 : 57 - 84
  • [37] On the Orlicz Minkowski Problem for Polytopes
    Qingzhong Huang
    Binwu He
    Discrete & Computational Geometry, 2012, 48 : 281 - 297
  • [38] On the planar dual Minkowski problem
    Chen, Shibing
    Li, Qi-Rui
    ADVANCES IN MATHEMATICS, 2018, 333 : 87 - 117
  • [39] On the Weyl Problem in Minkowski Space
    Smith, Graham
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (19) : 15187 - 15239
  • [40] On the Orlicz Minkowski Problem for Polytopes
    Huang, Qingzhong
    He, Binwu
    DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 48 (02) : 281 - 297