power transformations;
volatility;
forecasting;
GARCH;
D O I:
10.1002/for.1079
中图分类号:
F [经济];
学科分类号:
02 ;
摘要:
This paper considers the forecast accuracy of a wide range of volatility models, with particular emphasis on the use of power transformations. Where one-period-ahead forecasts are considered, the power autoregressive models are ranked first by a range of error metrics. Over longer forecast horizons, however, generalized autoregressive conditional heteroscedasticity models are preferred. A value-at-risk-based forecast assessment indicates that, while the forecast errors are independent, they are not independent and identically distributed, although this latter result is sensitive to the choice of forecast horizon. Our results are robust across a number of different asset markets. Copyright (C) 2008 John Wiley & Sons, Ltd.
机构:
Univ Norte, Dept Math & Stat, Km 5 Via Puerto Colombia, Barranquilla 081007, Atlantico, ColombiaUniv Norte, Dept Math & Stat, Km 5 Via Puerto Colombia, Barranquilla 081007, Atlantico, Colombia
Rubio, Lihki
Pinedo, Adriana Palacio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Norte, Dept Math & Stat, Km 5 Via Puerto Colombia, Barranquilla 081007, Atlantico, ColombiaUniv Norte, Dept Math & Stat, Km 5 Via Puerto Colombia, Barranquilla 081007, Atlantico, Colombia
Pinedo, Adriana Palacio
Castano, Adriana Mejia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Norte, Dept Math & Stat, Km 5 Via Puerto Colombia, Barranquilla 081007, Atlantico, ColombiaUniv Norte, Dept Math & Stat, Km 5 Via Puerto Colombia, Barranquilla 081007, Atlantico, Colombia
Castano, Adriana Mejia
Ramos, Filipe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, Fac Ciencias, Ctr Estat & Aplicacoes, CEAUL, P-1749016 Lisbon, PortugalUniv Norte, Dept Math & Stat, Km 5 Via Puerto Colombia, Barranquilla 081007, Atlantico, Colombia