Time-fractional diffusion of distributed order

被引:165
|
作者
Mainardi, Francesco [1 ,2 ]
Mura, Antonio [1 ,2 ]
Pagnini, Gianni [3 ]
Gorenflo, Rudolf [4 ]
机构
[1] Univ Bologna, Dept Phys, I-40126 Bologna, Italy
[2] Ist Nazl Fis Nucl, I-40126 Bologna, Italy
[3] ENEA, Italian Agcy New Technol, I-40129 Bologna, Italy
[4] Free Univ Berlin, Dept Math & Informat, D-14195 Berlin, Germany
关键词
anomalous diffusion; fractional derivatives; Mittag-Leffler function; Laplace transform; Fourier transform;
D O I
10.1177/1077546307087452
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The partial differential equation of Gaussian diffusion is generalized by using the time-fractional derivative of distributed order between 0 and 1, in both the Riemann-Liouville and the Caputo sense. For a general distribution of time orders we provide the fundamental solution, which is a probability density, in terms of an integral of Laplace type. The kernel depends on the type of the assumed fractional derivative, except for the single order case where the two approaches turn out to be equivalent. We consider in some detail two cases of order distribution: Double-order, and uniformly distributed order. Plots of the corresponding fundamental solutions and their variance are provided for these cases, pointing out the remarkable difference between the two approaches for small and large times.
引用
收藏
页码:1267 / 1290
页数:24
相关论文
共 50 条
  • [41] Afast numerical scheme for avariably distributed-order time-fractional diffusion equation and its analysis
    Jia, Jinhong
    Wang, Hong
    Zheng, Xiangcheng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 108 : 24 - 32
  • [42] Identifying a fractional order and a time-dependent coefficient in a time-fractional diffusion wave equation
    Yan, Xiong-bin
    Wei, Ting
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 424
  • [43] A Second Order Time Accurate SUSHI Method for the Time-Fractional Diffusion Equation
    Bradji, Abdallah
    NUMERICAL METHODS AND APPLICATIONS, NMA 2018, 2019, 11189 : 197 - 206
  • [44] Time-fractional telegraph equation of distributed order in higher dimensions with Hilfer fractional derivatives
    Vieira, Nelson
    Rodrigues, M. Manuela
    Ferreira, Milton
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (10): : 3595 - 3631
  • [45] Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation
    Li, Gongsheng
    Zhang, Dali
    Jia, Xianzheng
    Yamamoto, Masahiro
    INVERSE PROBLEMS, 2013, 29 (06)
  • [46] On Time-Fractional Diffusion Equations with Space-Dependent Variable Order
    Yavar Kian
    Eric Soccorsi
    Masahiro Yamamoto
    Annales Henri Poincaré, 2018, 19 : 3855 - 3881
  • [47] Higher Order Computational Approach for Generalized Time-Fractional Diffusion Equation
    Kedia, Nikki
    Alikhanov, Anatoly A.
    Singh, Vineet Kumar
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024,
  • [48] Convergence Order of a Finite Volume Scheme for the Time-Fractional Diffusion Equation
    Bradji, Abdallah
    Fuhrmann, Jurgen
    NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016), 2017, 10187 : 33 - 45
  • [49] Higher-Order Symmetries of a Time-Fractional Anomalous Diffusion Equation
    Gazizov, Rafail K.
    Lukashchuk, Stanislav Yu.
    MATHEMATICS, 2021, 9 (03) : 1 - 10
  • [50] Wellposedness and regularity of the variable-order time-fractional diffusion equations
    Wang, Hong
    Zheng, Xiangcheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1778 - 1802