Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface

被引:236
|
作者
Barrat, JL [1 ]
Bocquet, L
机构
[1] Univ Lyon 1, Dept Phys Mat, F-69622 Villeurbanne, France
[2] CNRS, F-69622 Villeurbanne, France
[3] Ecole Normale Super Lyon, Phys Lab, F-69364 Lyon 07, France
关键词
D O I
10.1039/a809733j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is well known that, at a macroscopic level, the boundary condition for a viscous fluid at a solid wall is one of "no-slip". The liquid velocity field vanishes at a fixed solid boundary. In this paper, we consider the special case of a liquid that partially wets the solid, i.e., a drop of liquid in equilibrium with its vapor on the solid substrate has a finite contact angle. Using extensive non-equilibrium molecular dynamics (NEMD) simulations, we show that when the contact angle is large enough, the boundary condition can drastically differ (at a microscopic level) from a "no-slip" condition. Slipping lengths exceeding 30 molecular diameters are obtained for a contact angle of 140 degrees, characteristic of mercury on glass. On the basis of a Kubo expression for delta, we derive an expression for the slipping length in terms of equilibrium quantities of the system. The predicted behaviour is in very good agreement with the numerical results for the slipping length obtained in the NEMD simulations. The existence of large slipping length may have important implications for the transport properties in nanoporous media under such "nonwetting" conditions.
引用
收藏
页码:119 / 127
页数:9
相关论文
共 50 条