Multi-View Graph Matching for 3D Model Retrieval

被引:4
|
作者
Su, Yu-Ting [1 ]
Li, Wen-Hui [1 ]
Nie, Wei-Zhi [1 ]
Liu, An-An [1 ]
机构
[1] Tianjin Univ, 92 Weijin Rd, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
3D model retrieval; graph matching; unsupervised learning; OBJECT RETRIEVAL; RECOGNITION; CLASSIFICATION; SEARCH;
D O I
10.1145/3387920
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
3D model retrieval has been widely utilized in numerous domains, such as computer-aided design, digital entertainment, and virtual reality. Recently, many graph-based methods have been proposed to address this task by using multi-viewinformation of 3D models. However, these methods are always constrained bymanyto-many graph matching for the similarity measure between pairwise models. In this article, we propose a multi-view graph matching method (MVGM) for 3D model retrieval. The proposed method can decompose the complicated multi-view graph-based similarity measure into multiple single-view graph-based similarity measures and fusion. First, we present the method for single-view graph generation, and we further propose the novel method for the similarity measure in a single-view graph by leveraging both node-wise context and model-wise context. Then, we propose multi-view fusion with diffusion, which can collaboratively integrate multiple single-view similarities w.r.t. different viewpoints and adaptively learn their weights, to compute the multi-view similarity between pairwise models. In this way, the proposed method can avoid the difficulty in the definition and computation of the traditional high-order graph. Moreover, this method is unsupervised and does not require a large-scale 3D dataset for model learning. We conduct evaluations on four popular and challenging datasets. The extensive experiments demonstrate the superiority and effectiveness of the proposed method compared against the state of the art. In particular, this unsupervised method can achieve competitive performances against the most recent supervised and deep learning method.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Feature representation for 3D object retrieval based on unconstrained multi-view
    Bin Zhou
    Xuanyin Wang
    Multimedia Systems, 2022, 28 : 1699 - 1711
  • [32] Feature representation for 3D object retrieval based on unconstrained multi-view
    Zhou, Bin
    Wang, Xuanyin
    MULTIMEDIA SYSTEMS, 2022, 28 (05) : 1699 - 1711
  • [33] 3D Object Detection based on Multi-View Feature Point Matching
    Yang, Tian
    Sang, Xinzhu
    Chen, Duo
    Guo, Nan
    Wang, Peng
    Yu, Xunbo
    Yan, Binbin
    Wang, Kuiru
    Yu, Chongxiu
    AI IN OPTICS AND PHOTONICS (AOPC 2019), 2019, 11342
  • [34] Multi-View Token Clustering and Fusion for 3D Object Recognition and Retrieval
    Fan, Linlong
    Ge, Yanqi
    Li, Wen
    Duan, Lixin
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1145 - 1150
  • [35] Triplet-Center Loss for Multi-View 3D Object Retrieval
    He, Xinwei
    Zhou, Yang
    Zhou, Zhichao
    Bai, Song
    Bai, Xiang
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 1945 - 1954
  • [36] 3D object retrieval based on multi-view convolutional neural networks
    Li, Xi-Xi
    Cao, Qun
    Wei, Sha
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (19) : 20111 - 20124
  • [37] View-based 3D model retrieval with probabilistic graph model
    Gao, Yue
    Tang, Jinhui
    Li, Haojie
    Dai, Qionghai
    Zhang, Naiyao
    NEUROCOMPUTING, 2010, 73 (10-12) : 1900 - 1905
  • [38] Multi-view 3D object retrieval leveraging the aggregation of view and instance attentive features
    Lin, Dongyun
    Li, Yiqun
    Cheng, Yi
    Prasad, Shitala
    Nwe, Tin Lay
    Dong, Sheng
    Guo, Aiyuan
    KNOWLEDGE-BASED SYSTEMS, 2022, 247
  • [39] Multi-View Attentive Contextualization for Multi-View 3D Object Detection
    Liu, Xianpeng
    Zheng, Ce
    Qian, Ming
    Xue, Nan
    Chen, Chen
    Zhang, Zhebin
    Li, Chen
    Wu, Tianfu
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 16688 - 16698
  • [40] Multi-view 3D model retrieval based on enhanced detail features with contrastive center loss
    Chen, Qiang
    Chen, Yinong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (08) : 10407 - 10426