Small-Scale Pedestrian Detection Based on Multi-level Feature Fusion

被引:0
|
作者
Yan, Chaoqi [1 ]
Zhang, Hong [1 ]
Li, Xuliang [1 ]
Yang, Yifan [1 ]
Chen, Hao [1 ]
Yuan, Ding [1 ]
机构
[1] Beihang Univ, Image Proc Ctr, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
Pedestrian detection; feature fusion; semantic information; aspect ratio; anchors; Caltech; CityPersons;
D O I
10.1117/12.2623467
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Pedestrian detection is a particular issue in both academia and industry. However, most existing pedestrian detection methods usually fail to detect small-scale pedestrians due to the introduction of feeble contrast and motion blur in images and videos. In this paper, we propose a multi-level feature fusion strategy to detect multi-scale pedestrians, which works particularly well with small-scale pedestrians that are relatively far from the camera. We propose a multi-level feature fusion strategy to make the shallow feature maps encode more semantic and global information to detect small-scale pedestrians. In addition, we redesign the aspect ratio of anchors to make it more robust for pedestrian detection task. The extensive experiments on both Caltech and CityPersons datasets demonstrate that our method outperforms the state-ofthe-art pedestrian detection algorithms. Our proposed approach achieves a....-2 of 0.84%, 23.91% and 62.19% under the "Near", Medium" and "Far" settings respectively on Caltech dataset, and also leads a better speed-accuracy trade-off with 0.28 second per image of 1024x2048 pixel compared with others on CityPersons dataset.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [31] Remote Sensing Image Change Detection Based on Multi-Level Diversity Feature Fusion
    Xie, Honggang
    Ma, Wanjie
    IEEE ACCESS, 2024, 12 : 81495 - 81505
  • [32] Multi-Level Drowsiness Detection Based on Deep Feature Fusion of Eye and Head Pose
    Ye, Fang
    Li, Shunxin
    Yuan, Xin
    Li, Longfei
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2021, : 107 - 111
  • [33] Ship Detection in Large-scale SAR Images Based on Dense Spatial Attention and Multi-level Feature Fusion
    Zhang, Limin
    Liu, Yingjian
    Guo, Qingxiang
    Yin, Haoyu
    Li, Yue
    Du, Pengting
    PROCEEDINGS OF ACM TURING AWARD CELEBRATION CONFERENCE, ACM TURC 2021, 2021, : 77 - 81
  • [34] Head Pose Estimation Based on Multi-Level Feature Fusion
    Yan, Chunman
    Zhang, Xiao
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (02)
  • [35] Human Action Recognition Based On Multi-level Feature Fusion
    Xu, Y. Y.
    Xiao, G. Q.
    Tang, X. Q.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL APPLICATIONS (CISIA 2015), 2015, 18 : 353 - 355
  • [36] MapsNet: Multi-level feature constraint and fusion network for change detection
    Pan, Jianping
    Cui, Wei
    An, Xinyong
    Huang, Xiao
    Zhang, Hanchao
    Zhang, Sihang
    Zhang, Ruiqian
    Li, Xin
    Cheng, Weihua
    Hu, Yong
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 108
  • [37] A multi-level feature weight fusion model for salient object detection
    Zhang, Shanqing
    Chen, Yujie
    Meng, Yiheng
    Lu, Jianfeng
    Li, Li
    Bai, Rui
    MULTIMEDIA SYSTEMS, 2023, 29 (03) : 887 - 895
  • [38] Multi-level feature fusion for fruit bearing branch keypoint detection
    Sun, Qixin
    Chai, Xiujuan
    Zeng, Zhikang
    Zhou, Guomin
    Sun, Tan
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 191
  • [39] A multi-level feature weight fusion model for salient object detection
    Zhang Shanqing
    Chen Yujie
    Meng Yiheng
    Lu Jianfeng
    Li Li
    Bai Rui
    Multimedia Systems, 2023, 29 : 887 - 895
  • [40] Crowd Counting based on Multi-level Multi-scale Feature
    Wu, Di
    Fan, Zheyi
    Yi, Shuhan
    APPLIED INTELLIGENCE, 2023, 53 (19) : 21891 - 21901