KRONECKER GRAPHICAL LASSO

被引:0
|
作者
Tsiligkaridis, Theodoros [1 ]
Hero, Alfred O., III [1 ]
Zhou, Shuheng [1 ]
机构
[1] Univ Michigan, Dept EECS, Ann Arbor, MI 48109 USA
关键词
sparsity; structured covariance estimation; penalized maximum likelihood; graphical lasso; COVARIANCE ESTIMATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider high-dimensional estimation of a (possibly sparse) Kronecker-decomposable covariance matrix given i.i.d. Gaussian samples. We propose a sparse covariance estimation algorithm, Kronecker Graphical Lasso (KGlasso), for the high dimensional setting that takes advantage of structure and sparsity. Convergence and limit point characterization of this iterative algorithm is established. Compared to standard Glasso, KGlasso has low computational complexity as the dimension of the covariance matrix increases. We derive a tight MSE convergence rate for KGlasso and show it strictly outperforms standard Glasso and FF. Simulations validate these results and shows that KGlasso outperforms the maximum-likelihood solution (FF), in the high-dimensional small-sample regime.
引用
收藏
页码:884 / 887
页数:4
相关论文
共 50 条
  • [1] On Convergence of Kronecker Graphical Lasso Algorithms
    Tsiligkaridis, Theodoros
    Hero, Alfred O., III
    Zhou, Shuheng
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (07) : 1743 - 1755
  • [2] Pathway Graphical Lasso
    Grechkin, Maxim
    Fazel, Maryam
    Witten, Daniela
    Lee, Su-In
    [J]. PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 2617 - 2623
  • [3] The Sylvester Graphical Lasso (SyGlasso)
    Wang, Yu
    Jang, Byoungwook
    Hero, Alfred
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108
  • [4] FUSED MULTIPLE GRAPHICAL LASSO
    Yang, Sen
    Lu, Zhaosong
    Shen, Xiaotong
    Wonka, Peter
    Ye, Jieping
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (02) : 916 - 943
  • [5] Clustered Fused Graphical Lasso
    Zhu, Yizhi
    Koyejo, Oluwasanmi
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2018, : 487 - 496
  • [6] Partial correlation graphical LASSO
    Carter, Jack Storror
    Rossell, David
    Smith, Jim Q.
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2024, 51 (01) : 32 - 63
  • [7] Tensor graphical lasso (TeraLasso)
    Greenewald, Kristjan
    Zhou, Shuheng
    Hero, Alfred, III
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2019, 81 (05) : 901 - 931
  • [8] Robust Gaussian Graphical Modeling with the Trimmed Graphical Lasso
    Yang, Eunho
    Lozano, Aurelie C.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [9] Autoregressive identification of Kronecker graphical models
    Zorzi, Mattia
    [J]. AUTOMATICA, 2020, 119
  • [10] The cluster graphical lasso for improved estimation of Gaussian graphical models
    Tan, Kean Ming
    Witten, Daniela
    Shojaie, Ali
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 85 : 23 - 36