Autoregressive identification of Kronecker graphical models

被引:12
|
作者
Zorzi, Mattia [1 ]
机构
[1] Univ Padua, Dipartimento Ingn Informaz, Via Gradenigo 6-B, I-35131 Padua, Italy
关键词
Sparsity and Kronecker product inducing priors; Empirical Bayesian learning; Convex relaxation; Convex optimization; RELATIVE ENTROPY; TIME; CONVERGENCE; SELECTION;
D O I
10.1016/j.automatica.2020.109053
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We address the problem to estimate a Kronecker graphical model corresponding to an autoregressive Gaussian stochastic process. The latter is completely described by the power spectral density function whose inverse has support which admits a sparse Kronecker product decomposition. We propose a Bayesian approach to estimate such a model. We test the effectiveness of the proposed method by some numerical experiments. We also apply the procedure to urban pollution monitoring data. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] QUARKS: Identification of Large-Scale Kronecker Vector-Autoregressive Models
    Sinquin, Baptiste
    Verhaegen, Michel
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (02) : 448 - 463
  • [2] Kronecker autoregressive and spherical harmonic ambient noise models
    Barthelemy, AC
    Willett, PK
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1999, 105 (03): : 1618 - 1629
  • [3] Learning Quasi-Kronecker Product Graphical Models
    Zorzi, Mattia
    [J]. 2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 1427 - 1432
  • [4] Topology Selection in Graphical Models of Autoregressive Processes
    Songsiri, Jitkomut
    Vandenberghe, Lieven
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 2671 - 2705
  • [5] KRONECKER GRAPHICAL LASSO
    Tsiligkaridis, Theodoros
    Hero, Alfred O., III
    Zhou, Shuheng
    [J]. 2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 884 - 887
  • [6] Bayesian Graphical Models for STructural Vector Autoregressive Processes
    Ahelegbey, Daniel Felix
    Billio, Monica
    Casarin, Roberto
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2016, 31 (02) : 357 - 386
  • [7] IDENTIFICATION OF NONSTATIONARITY FOR AUTOREGRESSIVE MODELS
    ZHANG, HM
    [J]. PROCEEDINGS OF THE 28TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-3, 1989, : 632 - 633
  • [8] LARGE-SCALE AUTOREGRESSIVE SYSTEM IDENTIFICATION USING KRONECKER PRODUCT EQUATIONS
    Bousse, Martijn
    De lathauwer, Lieven
    [J]. 2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 1348 - 1352
  • [9] ARMA Identification of Graphical Models
    Avventi, Enrico
    Lindquist, Anders G.
    Wahlberg, Bo
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (05) : 1167 - 1178
  • [10] Bayesian identification of seasonal autoregressive models
    Shaarawy, SM
    Ali, SS
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2003, 32 (05) : 1067 - 1084