Interpolating log-determinant and trace of the powers of matrix A plus tB

被引:0
|
作者
Ameli, Siavash [1 ]
Shadden, Shawn C. [1 ]
机构
[1] Univ Calif Berkeley, Mech Engn, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Parameter estimation; Gaussian process; Generalized cross-validation; Maximum likelihood method; Schatten norm; Anti-norm; GENERALIZED CROSS-VALIDATION; GLOBAL OPTIMIZATION; INEQUALITIES; INVERSE;
D O I
10.1007/s11222-022-10173-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We develop heuristic interpolation methods for the functions t bar right arrow log det (A + tB) and t bar right arrow trace ((A + tB)(p)) where the matrices A and B are Hermitian and positive (semi) definite and p and t are real variables. These functions are featured in many applications in statistics, machine learning, and computational physics. The presented interpolation functions are based on the modification of sharp bounds for these functions. We demonstrate the accuracy and performance of the proposed method with numerical examples, namely, the marginal maximum likelihood estimation for Gaussian process regression and the estimation of the regularization parameter of ridge regression with the generalized cross-validation method.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] A dual spectral projected gradient method for log-determinant semidefinite problems
    Nakagaki, Takashi
    Fukuda, Mituhiro
    Kim, Sunyoung
    Yamashita, Makoto
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 76 (01) : 33 - 68
  • [22] A PROXIMAL POINT ALGORITHM FOR LOG-DETERMINANT OPTIMIZATION WITH GROUP LASSO REGULARIZATION
    Yang, Junfeng
    Sun, Defeng
    Toh, Kim-Chuan
    SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (02) : 857 - 893
  • [23] From Log-Determinant Inequalities to Gaussian Entanglement via Recoverability Theory
    Lami, Ludovico
    Hirche, Christoph
    Adesso, Gerardo
    Winter, Andreas
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (11) : 7553 - 7568
  • [24] Tight Error Bounds for Log-Determinant Cones Without Constraint Qualifications
    Ying Lin
    Scott B. Lindstrom
    Bruno F. Lourenço
    Ting Kei Pong
    Journal of Optimization Theory and Applications, 2025, 205 (3)
  • [25] On how to solve large-scale log-determinant optimization problems
    Chengjing Wang
    Computational Optimization and Applications, 2016, 64 : 489 - 511
  • [26] A dual spectral projected gradient method for log-determinant semidefinite problems
    Takashi Nakagaki
    Mituhiro Fukuda
    Sunyoung Kim
    Makoto Yamashita
    Computational Optimization and Applications, 2020, 76 : 33 - 68
  • [27] PRIMAL-DUAL STOCHASTIC SUBGRADIENT METHOD FOR LOG-DETERMINANT OPTIMIZATION
    Wu, Songwei
    Yu, Hang
    Dauwels, Justin
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3117 - 3121
  • [28] Log-Determinant Divergences Revisited: Alpha-Beta and Gamma Log-Det Divergences
    Cichocki, Andrzej
    Cruces, Sergio
    Amari, Shun-ichi
    ENTROPY, 2015, 17 (05): : 2988 - 3034
  • [29] Diagonal Quasi-Newton Updating Formula Using Log-Determinant Norm
    Sim, Hong Seng
    Leong, Wah June
    Chen, Chuei Yee
    Ibrahim, Siti Nur Iqmal
    ADVANCES IN INDUSTRIAL AND APPLIED MATHEMATICS, 2016, 1750
  • [30] A general scheme for log-determinant computation of matrices via stochastic polynomial approximation
    Peng, Wei
    Wang, Hongxia
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (04) : 1259 - 1271