Interpolating log-determinant and trace of the powers of matrix A plus tB

被引:0
|
作者
Ameli, Siavash [1 ]
Shadden, Shawn C. [1 ]
机构
[1] Univ Calif Berkeley, Mech Engn, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Parameter estimation; Gaussian process; Generalized cross-validation; Maximum likelihood method; Schatten norm; Anti-norm; GENERALIZED CROSS-VALIDATION; GLOBAL OPTIMIZATION; INEQUALITIES; INVERSE;
D O I
10.1007/s11222-022-10173-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We develop heuristic interpolation methods for the functions t bar right arrow log det (A + tB) and t bar right arrow trace ((A + tB)(p)) where the matrices A and B are Hermitian and positive (semi) definite and p and t are real variables. These functions are featured in many applications in statistics, machine learning, and computational physics. The presented interpolation functions are based on the modification of sharp bounds for these functions. We demonstrate the accuracy and performance of the proposed method with numerical examples, namely, the marginal maximum likelihood estimation for Gaussian process regression and the estimation of the regularization parameter of ridge regression with the generalized cross-validation method.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Randomized matrix-free trace and log-determinant estimators
    Saibaba, Arvind K.
    Alexanderian, Alen
    Ipsen, Ilse C. F.
    NUMERISCHE MATHEMATIK, 2017, 137 (02) : 353 - 395
  • [2] Randomized matrix-free trace and log-determinant estimators
    Arvind K. Saibaba
    Alen Alexanderian
    Ilse C. F. Ipsen
    Numerische Mathematik, 2017, 137 : 353 - 395
  • [3] Randomized block Krylov subspace methods for trace and log-determinant estimators
    Hanyu Li
    Yuanyang Zhu
    BIT Numerical Mathematics, 2021, 61 : 911 - 939
  • [4] THE SYMMETRIZED LOG-DETERMINANT DIVERGENCE
    Kim, Sejong
    Mer, Vatsalkumar N.
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2024, 42 (04): : 985 - 995
  • [5] Randomized block Krylov subspace methods for trace and log-determinant estimators
    Li, Hanyu
    Zhu, Yuanyang
    BIT NUMERICAL MATHEMATICS, 2021, 61 (03) : 911 - 939
  • [6] Fast and Accurate Log-Determinant Approximations
    Deen, Owen
    Waller, Colton River
    Ward, John Paul
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1520 - 1524
  • [7] High Frequency Surface Wave Radar Detector Based on Log-determinant Divergence and Symmetrized Log-determinant Divergence
    Ye Lei
    Wang Yong
    Yang Qiang
    Deng Weibo
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2019, 41 (08) : 1931 - 1938
  • [8] Detection of maneuvering target with motion compensation errors based on α log-determinant divergence and symmetrized α log-determinant divergence
    Jin, Ke
    Li, Gongquan
    Lai, Tao
    Wu, Jizhou
    Zhao, Yongjun
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (02):
  • [9] Quasi-entropy by log-determinant covariance matrix and application to liquid crystals?
    Xu, Jie
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 435
  • [10] Online Linear Optimization with the Log-Determinant Regularizer
    Moridomi, Ken-ichiro
    Hatano, Kohei
    Takimoto, Eiji
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (06) : 1511 - 1520