Fully Automatic Liver Volumetry Using 3D Level Set Segmentation for Differentiated Liver Tissue Types in Multiple Contrast MR Datasets

被引:0
|
作者
Gloger, Oliver [1 ]
Toennies, Klaus [2 ]
Kuehn, Jens-Peter [3 ]
机构
[1] Ernst Moritz Arndt Univ Greifswald, Inst Community Med, Walther Rathenau Str 48, D-17475 Greifswald, Germany
[2] Univ Magdeburg, Inst Simulat & Graph, D-39106 Magdeburg, Germany
[3] Ernst Moritz Arndt Univ Greifswald, Inst Diagnost Radiol & Neuroradiol, D-17475 Greifswald, Germany
关键词
Level Set Segmentation; Distance Transformation; Linear Discriminant Analysis; Bayes' Theorem;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Modern epidemiological studies analyze a high amount of magnetic resonance imaging (MRI) data, which requires fully automatic segmentation methods to assist in organ volumetry. We propose a fully automatic two-step 3D level set algorithm for liver segmentation in MRI data that delineates liver tissue on liver probability maps and uses a distance transform based segmentation refinement method to improve segmentation results. MR intensity distributions in test subjects are extracted in a training phase to obtain prior information on liver, kidney and background tissue types. Probability maps are generated by using linear discriminant analysis and Bayesian methods. The algorithm is able to differentiate between normal liver tissue and fatty liver tissue and generates probability maps for both tissues to improve the segmentation results. The algorithm is embedded in a volumetry framework and yields sufficiently good results for use in epidemiological studies.
引用
收藏
页码:512 / 523
页数:12
相关论文
共 50 条
  • [31] A 3D Deep Neural Network for Liver Volumetry in 3T Contrast-Enhanced MRI
    Winther, Hinrich
    Hundt, Christian
    Ringe, Kristina Imeen
    Wacker, Frank K.
    Schmidt, Bertil
    Juergens, Julian
    Haimerl, Michael
    Beyer, Lukas Philipp
    Stroszczynski, Christian
    Wiggermann, Philipp
    Verloh, Niklas
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2021, 193 (03): : 305 - 314
  • [32] A study of generalization and compatibility performance of 3D U-Net segmentation on multiple heterogeneous liver CT datasets
    He, Baochun
    Yin, Dalong
    Chen, Xiaoxia
    Luo, Huoling
    Xiao, Deqiang
    He, Mu
    Wang, Guisheng
    Fang, Chihua
    Liu, Lianxin
    Jia, Fucang
    BMC MEDICAL IMAGING, 2021, 21 (01)
  • [33] A study of generalization and compatibility performance of 3D U-Net segmentation on multiple heterogeneous liver CT datasets
    Baochun He
    Dalong Yin
    Xiaoxia Chen
    Huoling Luo
    Deqiang Xiao
    Mu He
    Guisheng Wang
    Chihua Fang
    Lianxin Liu
    Fucang Jia
    BMC Medical Imaging, 21
  • [34] Optimal Multiresolution 3D Level-Set Method for Liver Segmentation incorporating Local Curvature Constraints
    Jimenez-Carretero, Daniel
    Fernandez-de-Manuel, Laura
    Pascau, Javier
    Tellado, Jose M.
    Ramon, Enrique
    Desco, Manuel
    Santos, Andres
    Ledesma-Carbayo, Maria J.
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 3419 - 3422
  • [35] Liver segmentation in contrast enhanced CT data using graph cuts and interactive 3D segmentation refinement methods
    Beichel, Reinhard
    Bornik, Alexander
    Bauer, Christian
    Sorantin, Erich
    MEDICAL PHYSICS, 2012, 39 (03) : 1361 - 1373
  • [36] A hybrid semi-automatic method for liver segmentation based on level-set methods using multiple seed points
    Yang, Xiaopeng
    Yu, Hee Chul
    Choi, Younggeun
    Lee, Wonsup
    Wang, Baojian
    Yang, Jaedo
    Hwang, Hongpil
    Kim, Ji Hyun
    Song, Jisoo
    Cho, Baik Hwan
    You, Heecheon
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2014, 113 (01) : 69 - 79
  • [37] 3D Volumetric CT Liver Segmentation Using Hybrid Segmentation Techniques
    Yussof, Wan Nural Jawahir Wan
    Burkhardt, Hans
    2009 INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION, 2009, : 404 - 408
  • [38] 3D automatic liver segmentation using feature-constrained Mahalanobis distance in CT images
    Al-Shaikhli, Saif Dawood Salman
    Yang, Michael Ying
    Rosenhahn, Bodo
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2016, 61 (04): : 401 - 412
  • [39] Automatic liver vessel segmentation using 3D region growing and hybrid active contour model
    Zeng, Ye-zhan
    Liao, Sheng-hui
    Tang, Ping
    Zhao, Yu-qian
    Liao, Miao
    Chen, Yan
    Liang, Yi-xiong
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 97 : 63 - 73
  • [40] Initialisation of 3D Level Set for Hippocampus Segmentation from Volumetric Brain MR Images
    Hajiesmaeili, Maryam
    Dehmeshki, Jamshid
    Nakhjavanlo, Bashir Bagheri
    Ellis, Tim
    6TH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2014), 2014, 9159