Stabilization of partial differential equations by sequential action control

被引:0
|
作者
Brodskyi, Yan [1 ]
Hante, Falk M. [1 ]
Seidel, Arno [2 ]
机构
[1] Humboldt Univ, Dept Math, Unter Linden 6, D-10099 Berlin, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, D-91054 Erlangen, Germany
关键词
partial differential equations; moving horizon control; optimization; uncertainties; stabilization; HARTMAN-GROBMAN THEOREM; MODEL-PREDICTIVE CONTROL; BOUNDARY CONTROL; PARABOLIC PDES; STABILITY; STATE;
D O I
10.1093/imamci/dnac021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a framework of sequential action control (SAC) for stabilization of systems of partial differential equations which can be posed as abstract semilinear control problems in Hilbert spaces. We follow a late-lumping approach and show that the control action can be explicitly obtained from variational principles using adjoint information. Moreover, we analyse the closed-loop system obtained from the SAC feedback for the linear problem with quadratic stage costs. We apply this theory to a prototypical example of an unstable heat equation and provide numerical results as the verification and demonstration of the framework.
引用
收藏
页码:1008 / 1033
页数:26
相关论文
共 50 条
  • [21] OPTIMUM CONTROL OF SYSTEMS GOVERNED BY PARTIAL DIFFERENTIAL EQUATIONS
    BERLIOCCHI, H
    LASRY, JM
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 273 (25): : 1222 - +
  • [22] BOUNDARY AND INTERIOR CONTROL FOR PARTIAL-DIFFERENTIAL EQUATIONS
    DELVER, R
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1975, 27 (01): : 200 - 217
  • [23] A convex penalty for switching control of partial differential equations
    Clason, Christian
    Rund, Armin
    Kunisch, Karl
    Barnard, Richard C.
    SYSTEMS & CONTROL LETTERS, 2016, 89 : 66 - 73
  • [24] A parareal in time procedure for the control of partial differential equations
    Maday, Y
    Turinici, G
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (04) : 387 - 392
  • [25] Space mapping for optimal control of partial differential equations
    Hintermüller, M
    Vicente, LN
    SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (04) : 1002 - 1025
  • [26] Optimal dirichlet control of partial differential equations on networks
    Stoll M.
    Winkler M.
    Electronic Transactions on Numerical Analysis, 2020, 54 : 392 - 419
  • [27] Nonconvex penalization of switching control of partial differential equations
    Clason, Christian
    Rund, Armin
    Kunisch, Karl
    SYSTEMS & CONTROL LETTERS, 2017, 106 : 1 - 8
  • [28] DIRECTIONAL SPARSITY IN OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS
    Herzog, Roland
    Stadler, Georg
    Wachsmuth, Gerd
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (02) : 943 - 963
  • [29] STOCHASTIC PARTIAL-DIFFERENTIAL EQUATIONS IN CONTROL OF STRUCTURES
    BALAKRISHNAN, AV
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1992, 176 : 12 - 21
  • [30] The control representative for a kind of hyperbolic partial differential equations
    Wang, Yongxu
    Gao, Cunchen
    Ma, Tianyun
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 : 1174 - 1178