Diameter control of arc produced multiwall carbon nanotubes by ambient gas cooling

被引:21
|
作者
Akita, S [1 ]
Kamo, S [1 ]
Nakayama, Y [1 ]
机构
[1] Univ Osaka Prefecture, Dept Phys & Elect, Osaka 5998531, Japan
来源
关键词
carbon nanotube; dc arc discharge; optical emission spectroscopy; plasma temperature; diameter distribution; carbon monomer;
D O I
10.1143/JJAP.41.L487
中图分类号
O59 [应用物理学];
学科分类号
摘要
The cooling effect of an ambient gas on arc discharge for the growth of carbon nanotubes has been investigated in terms of the diameter of the nanotube. A small diameter nanotube with high purity is successfully obtained by cooling of ambient He gas using a water-cooling coil placed around the arc discharge. Furthermore, the width of the diameter distribution becomes narrow under this condition. The effective cooling of the ambient gas induces high plasma temperature, which is evaluated by optical emission spectroscopy.
引用
收藏
页码:L487 / L489
页数:3
相关论文
共 50 条
  • [41] A simple method to control the diameter of carbon nanotubes and the effect of the diameter in field emission
    Jung, Hyun Young
    Jung, Sung Mi
    Kim, Lily
    Suh, Jung Sang
    CARBON, 2008, 46 (06) : 969 - 973
  • [42] Purification of carbon nanotubes produced by the electric arc-discharge method
    Ribeiro, Helio
    Schnitzler, Mariane Cristina
    da Silva, Wellington Marcos
    Santos, Adelina Pinheiro
    SURFACES AND INTERFACES, 2021, 26
  • [43] Amorphous carbon nanotubes produced by a temperature controlled DC arc discharge
    Liu, YN
    Song, XL
    Zhao, TK
    Zhu, JW
    Hirscher, M
    Philipp, F
    CARBON, 2004, 42 (8-9) : 1852 - 1855
  • [44] Characterization of carbon nanotubes produced by arc discharge: Effect of the background pressure
    Waldorff, EI
    Waas, AM
    Friedmann, PP
    Keidar, M
    JOURNAL OF APPLIED PHYSICS, 2004, 95 (05) : 2749 - 2754
  • [45] Comparison of structure and yield of multiwall carbon nanotubes produced by the CVD technique and a water assisted method
    Bansal, Malti
    Lal, C.
    Srivastava, Ritu
    Kamalasanan, M. N.
    Tanwar, L. S.
    PHYSICA B-CONDENSED MATTER, 2010, 405 (07) : 1745 - 1749
  • [46] Performance of cementitious materials produced by incorporating surface treated multiwall carbon nanotubes and silica fume
    Tamimi, Adil
    Hassan, Noha M.
    Fattah, Kazi
    Talachi, Amirhooman
    CONSTRUCTION AND BUILDING MATERIALS, 2016, 114 : 934 - 945
  • [47] Phase Separation as a Tool to Control Dispersion of Multiwall Carbon Nanotubes in Polymeric Blends
    Bose, Suryasarathi
    Ozdilek, Ceren
    Leys, Jan
    Seo, Jin Won
    Wubbenhorst, Michael
    Vermant, Jan
    Moldenaers, Paula
    ACS APPLIED MATERIALS & INTERFACES, 2010, 2 (03) : 800 - 807
  • [48] Gas Sensors Based on Locally Heated Multiwall Carbon Nanotubes Decorated with Metal Nanoparticles
    Savu, R.
    Silveira, J. V.
    Alaferdov, A.
    Joanni, E.
    Gobbi, A. L.
    Canesqui, M. A.
    de Lara, D. S.
    Souza Filho, A. G.
    Moshkalev, S. A.
    JOURNAL OF SENSORS, 2015, 2015
  • [49] Hydrogen Gas Sensor Based on Highly Ordered Polyaniline/Multiwall Carbon Nanotubes Composite
    Arsat, R.
    He, X.
    Spizzirri, P.
    Shafiei, M.
    Arsat, M.
    Wlodarski, W.
    SENSOR LETTERS, 2011, 9 (02) : 940 - 943
  • [50] Diameter control in the formation of single-wall carbon nanotubes
    Sen, R
    Ohtsuka, Y
    Ishigaki, T
    Kasuya, D
    Suzuki, S
    Kataura, H
    Achiba, Y
    AMORPHOUS AND NANOSTRUCTURED CARBON, 2000, 593 : 51 - 56