Critical Assessment of Data-Driven versus Heuristic Reaction Coordinates in Solution Chemistry

被引:5
|
作者
Magrino, Theo [1 ]
Huet, Leon [1 ]
Saitta, A. Marco [1 ]
Pietrucci, Fabio [1 ]
机构
[1] Sorbonne Univ, Inst Mineral Phys Mat & Cosmochim, Museum Natl Hist Nat, F-75005 Paris, France
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2022年 / 126卷 / 47期
关键词
FREE-ENERGY ESTIMATION; MODEL SN2 REACTION; GAS-PHASE; MOLECULAR-DYNAMICS; METHYL HALIDES; NUCLEOPHILIC-SUBSTITUTION; TRANSITION-STATE; CHLORIDE-ION; RATES; HYDROLYSIS;
D O I
10.1021/acs.jpca.2c07640
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Reaction coordinates are an essential ingredient of theoretical studies of rare events in chemistry and physics because they carry information about reaction mechanism and allow the computation of free-energy landscapes and kinetic rates. We present a critical assessment of the merits and disadvantages of heuristic reaction coordinates, largely employed today, with respect to coordinates optimized on the basis of reliable transition-path sampling data. We take as a test bed multinanosecond ab initio molecular dynamics simulations of chloride SN2 substitution on methyl chloride in explicit water. The computational protocol we devise allows the unsupervised optimization of agnostic coor-dinates able to account for solute and solvent contributions, yielding a free-energy reconstruction of quality comparable to the best heuristic coordinates without requiring chemical intuition.
引用
收藏
页码:8887 / 8900
页数:14
相关论文
共 50 条
  • [1] Data-driven computation of molecular reaction coordinates
    Bittracher, Andreas
    Banisch, Ralf
    Schuette, Christof
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (15):
  • [2] Data-Driven Public Diplomacy: A Critical and Reflexive Assessment
    Bean, Hamilton
    Comor, Edward
    [J]. ALL AZIMUTH-A JOURNAL OF FOREIGN POLICY AND PEACE, 2018, 7 (01): : 5 - 20
  • [3] Aqueous solution chemistry in silico and the role of data-driven approaches
    Banerjee, Debarshi
    Azizi, Khatereh
    Egan, Colin K.
    Donkor, Edward Danquah
    Malosso, Cesare
    Di Pino, Solana
    Miron, Gonzalo Diaz
    Stella, Martina
    Sormani, Giulia
    Hozana, Germaine Neza
    Monti, Marta
    Morzan, Uriel N.
    Rodriguez, Alex
    Cassone, Giuseppe
    Jelic, Asja
    Scherlis, Damian
    Hassanali, Ali
    [J]. CHEMICAL PHYSICS REVIEWS, 2024, 5 (02):
  • [4] Data-driven discovery of coordinates and governing equations
    Champion, Kathleen
    Lusch, Bethany
    Kutz, J. Nathan
    Brunton, Steven L.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (45) : 22445 - 22451
  • [5] A Data-Driven Heuristic for Corrective Transmission Switching
    Li, Xingpeng
    Balasubramanian, Pranavamoorthy
    Hedman, Kory
    [J]. 2016 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2016,
  • [6] Prediction rigidities for data-driven chemistry
    Chong, Sanggyu
    Bigi, Filippo
    Grasselli, Federico
    Loche, Philip
    Kellner, Matthias
    Ceriotti, Michele
    [J]. FARADAY DISCUSSIONS, 2024, : 322 - 344
  • [7] Foundations of data-driven medicinal chemistry
    Bajorath, Juergen
    [J]. FUTURE SCIENCE OA, 2018, 4 (08):
  • [8] Data-Driven Elucidation of Flavor Chemistry
    Kou, Xingran
    Shi, Peiqin
    Gao, Chukun
    Ma, Peihua
    Xing, Huadong
    Ke, Qinfei
    Zhang, Dachuan
    [J]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (18) : 6789 - 6802
  • [9] Strengths and weaknesses of data-driven docking in critical assessment of prediction of interactions
    de Vries, Sjoerd J.
    Melquiond, Adrien S. J.
    Kastritis, Panagiotis L.
    Karaca, Ezgi
    Bordogna, Annalisa
    van Dijk, Marc
    Rodrigues, Joao P. G. L. M.
    Bonvin, Alexandre M. J. J.
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2010, 78 (15) : 3242 - 3249
  • [10] A Data-Driven Heuristic Method for Irregular Flight Recovery
    Wang, Nianyi
    Wang, Huiling
    Pei, Shan
    Zhang, Boyu
    [J]. MATHEMATICS, 2023, 11 (11)