Aqueous solution chemistry in silico and the role of data-driven approaches

被引:2
|
作者
Banerjee, Debarshi [1 ,2 ]
Azizi, Khatereh [1 ,3 ]
Egan, Colin K. [1 ]
Donkor, Edward Danquah [1 ,2 ]
Malosso, Cesare [2 ]
Di Pino, Solana [4 ]
Miron, Gonzalo Diaz [1 ]
Stella, Martina [1 ]
Sormani, Giulia [1 ]
Hozana, Germaine Neza [1 ,5 ]
Monti, Marta [1 ]
Morzan, Uriel N. [6 ]
Rodriguez, Alex [1 ,7 ]
Cassone, Giuseppe [8 ]
Jelic, Asja [1 ]
Scherlis, Damian [4 ]
Hassanali, Ali [1 ]
机构
[1] Abdus Salaam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[2] Scuola Int Super Studi Avanzati SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[3] Inst Res Fundamental Sci IPM, Sch Nano Sci, Tehran 193955531, Iran
[4] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Quim Inorgan Analit & Quim Fis, INQUIMAE, Buenos Aires 1428, DF, Argentina
[5] Univ Trieste, Dipartimento Fis, Via Alfonso Valerio 2, I-34127 Trieste, Italy
[6] Univ Buenos Aires, Fac Ciencias Exactas & Nat Pabellon, Inst Fis Buenos Aires, Ciudad Univ 1, RA-1428 Buenos Aires, Argentina
[7] Univ Trieste, Dipartimento Matemat & Geosci, Via Alfonso Valerio 12-1, I-34127 Trieste, Italy
[8] CNR, Natl Res Council, Inst Chem & Phys Proc, IPCF, Via S dAlcontres 37, I-98158 Pisa, Italy
来源
CHEMICAL PHYSICS REVIEWS | 2024年 / 5卷 / 02期
关键词
INITIO MOLECULAR-DYNAMICS; DENSITY-FUNCTIONAL THEORY; ENERGY DECOMPOSITION ANALYSIS; REACTIVE FORCE-FIELD; LIQUID-LIQUID TRANSITION; HYDRATED EXCESS PROTON; COARSE-GRAINED MODELS; AB-INITIO; POTENTIAL-ENERGY; 1ST PRINCIPLES;
D O I
10.1063/5.0207567
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The use of computer simulations to study the properties of aqueous systems is, today more than ever, an active area of research. In this context, during the last decade there has been a tremendous growth in the use of data-driven approaches to develop more accurate potentials for water as well as to characterize its complexity in chemical and biological contexts. We highlight the progress, giving a historical context, on the path to the development of many-body and reactive potentials to model aqueous chemistry, including the role of machine learning strategies. We focus specifically on conceptual and methodological challenges along the way in performing simulations that seek to tackle problems in modeling the chemistry of aqueous solutions. In conclusion, we summarize our perspectives on the use and integration of advanced data-science techniques to provide chemical insights into physical chemistry and how this will influence computer simulations of aqueous systems in the future.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] The Role of Damping in Complex Structural Dynamics: Data-Driven Approaches
    Stender, Merten
    Hoffmann, Norbert
    Lecture Notes in Applied and Computational Mechanics, 1613, (83-104):
  • [2] Prediction rigidities for data-driven chemistry
    Chong, Sanggyu
    Bigi, Filippo
    Grasselli, Federico
    Loche, Philip
    Kellner, Matthias
    Ceriotti, Michele
    FARADAY DISCUSSIONS, 2025, 256 (00) : 322 - 344
  • [3] Data-driven systems biology approaches
    Chen, Luonan
    JOURNAL OF MOLECULAR CELL BIOLOGY, 2017, 9 (06) : 435 - 435
  • [4] Notes on data-driven system approaches
    Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
    不详
    Zidonghua Xuebao Acta Auto. Sin., 2009, 6 (668-675):
  • [5] Data-driven approaches in FinTech: a survey
    Tian, Xin
    He, Jing Selena
    Han, Meng
    INFORMATION DISCOVERY AND DELIVERY, 2021, 49 (02) : 123 - 135
  • [6] Data-driven Approaches to Edge Caching
    Li, Guangyu
    Shen, Qiang
    Liu, Yong
    Cao, Houwei
    Han, Zifa
    Li, Feng
    Li, Jin
    PROCEEDINGS OF THE 2018 WORKSHOP ON NETWORKING FOR EMERGING APPLICATIONS AND TECHNOLOGIES (NEAT '18), 2018, : 8 - 14
  • [7] Foundations of data-driven medicinal chemistry
    Bajorath, Juergen
    FUTURE SCIENCE OA, 2018, 4 (08):
  • [8] Data-Driven Approaches for Smart Parking
    Bock, Fabian
    Di Martino, Sergio
    Sester, Monika
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2017, PT III, 2017, 10536 : 358 - 362
  • [9] DATA-DRIVEN APPROACHES TO EMPIRICAL DISCOVERY
    LANGLEY, P
    ZYTKOW, JM
    ARTIFICIAL INTELLIGENCE, 1989, 40 (1-3) : 283 - 312
  • [10] Data-Driven Elucidation of Flavor Chemistry
    Kou, Xingran
    Shi, Peiqin
    Gao, Chukun
    Ma, Peihua
    Xing, Huadong
    Ke, Qinfei
    Zhang, Dachuan
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (18) : 6789 - 6802