Development of the Smoothed Natural Neighbor Petrov-Galerkin Method

被引:0
|
作者
Wang, Kai [1 ]
Zhou, Shenjie [2 ]
Nie, Zhifeng [3 ]
机构
[1] Jinan Engn & Vocat Tech Coll, Dept Mech & Elect Engn, Jinan 250200, Peoples R China
[2] Shandong Univ, Sch Mech Engn, Jinan 250061, Peoples R China
[3] Shandong Univ Sci & Technol, Coll Mech & Elect Engn, Qingdao 265510, Peoples R China
关键词
Meshless method; Natural neighbor interpolation; Petrov-Galerkin method; Strain smoothing; Elasticity;
D O I
10.4028/www.scientific.net/AMM.201-202.198
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The strain smoothing technique is employed in the natural neighbor Petrov-Galerkin method (NNPG), and the so-called smoothed natural neighbor Petrov-Galerkin method is proposed and studied. This method inherits the advantages of the generalized MLPG method and possesses the easy imposition of essential boundary condition and the domain integration is completely avoided. In comparison with the traditional NNPG, the smoothed natural neighbor Petrov-Galerkin method can obtain more stable and accurate result without increasing the computational cost.
引用
收藏
页码:198 / +
页数:2
相关论文
共 50 条
  • [21] Free vibration and dynamic response analysis by Petrov-Galerkin natural element method
    Cho, Jin-Rae
    Lee, Hong-Woo
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2006, 20 (11) : 1881 - 1890
  • [22] The petrov-galerkin and iterated petrov-galerkin methods for second-kind integral equations
    Department of Scientific Computation, Zhongshan University, Guangzhou 510275, China
    不详
    SIAM J Numer Anal, 1 (406-434):
  • [23] The Petrov-Galerkin and iterated Petrov-Galerkin methods for second-kind integral equations
    Chen, ZY
    Xu, YS
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) : 406 - 434
  • [24] A meshless local Petrov-Galerkin scaled boundary method
    Deeks, AJ
    Augarde, CE
    COMPUTATIONAL MECHANICS, 2005, 36 (03) : 159 - 170
  • [25] A SCALABLE PRECONDITIONER FOR A PRIMAL DISCONTINUOUS PETROV-GALERKIN METHOD
    Barker, A. T.
    Dobrev, V.
    Gopalakrishnan, J.
    Kolev, T.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (02): : A1187 - A1203
  • [26] DOMAIN DECOMPOSITION PRECONDITIONERS FOR THE DISCONTINUOUS PETROV-GALERKIN METHOD
    Li, Xiang
    Xu, Xuejun
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (03): : 1021 - 1044
  • [27] Meshless local Petrov-Galerkin method for plane piezoelectricity
    Sladek, J.
    Sladek, V.
    Zhang, Ch.
    Garcia-Sanche, F.
    Wünsche, M.
    Computers, Materials and Continua, 2006, 4 (02): : 109 - 117
  • [28] A quasi optimal Petrov-Galerkin method for Helmholtz problem
    Loula, Abimael F. D.
    Fernandes, Daniel T.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 80 (12) : 1595 - 1622
  • [29] A MOVING PETROV-GALERKIN METHOD FOR TRANSPORT-EQUATIONS
    HERBST, BM
    SCHOOMBIE, SW
    MITCHELL, AR
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1982, 18 (09) : 1321 - 1336
  • [30] Error assessment in the meshless local Petrov-Galerkin method
    Pannachet, T
    Barry, W
    Askes, H
    COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM, 2001, : 989 - 994