Slowing of acoustic waves in electrorheological and string-fluid complex plasmas

被引:30
|
作者
Schwabe, M. [1 ]
Khrapak, S. A. [1 ]
Zhdanov, S. K. [1 ]
Pustylnik, M. Y. [1 ]
Raeth, C. [1 ]
Fink, M. [1 ]
Kretschmer, M. [2 ]
Lipaev, A. M. [3 ,4 ]
Molotkov, V., I [3 ]
Schmitz, A. S. [2 ]
Thoma, M. H. [2 ]
Usachev, A. D. [3 ]
Zobnin, A., V [3 ]
Padalka, G., I [5 ]
Fortov, V. E. [3 ]
Petrov, O. F. [3 ]
Thomas, H. M. [1 ]
机构
[1] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Mat Phys Weltraum, D-82234 Wessling, Germany
[2] Justus Liebig Univ Giessen, Phys Inst 1, D-35392 Giessen, Germany
[3] Russian Acad Sci, Joint Inst High Temp, Moscow 125412, Russia
[4] Moscow Inst Phys & Technol MIPT, 9 Inst Sky Per, Dolgoprudnyi 141701, Russia
[5] Gagarin Res & Test Cosmonaut Training Ctr, Star City 141160, Moscow Region, Russia
来源
NEW JOURNAL OF PHYSICS | 2020年 / 22卷 / 08期
基金
俄罗斯科学基金会;
关键词
dusty plasma; complex plasma; dusty density waves; electrorheological fluid; string fluid; microgravity; DUST MOLECULES; PARTICLES; SOUND;
D O I
10.1088/1367-2630/aba91b
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The PK-4 laboratory consists of a direct current plasma tube into which microparticles are injected, forming a complex plasma. The microparticles acquire many electrons from the ambient plasma and are thus highly charged and interact with each other. If ion streams are present, wakes form downstream of the microparticles, which lead to an attractive term in the potential between the microparticles, triggering the appearance of microparticle strings and modifying the complex plasma into an electrorheological form. Here we report on a set of experiments on compressional waves in such a string fluid in the PK-4 laboratory during a parabolic flight and on board the International Space Station. We find a slowing of acoustic waves and hypothesize that the additional attractive interaction term leads to slower wave speeds than in complex plasmas with purely repulsive potentials. We test this hypothesis with simulations, and compare with theory.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Acoustic waves in a moving fluid
    Ahmad, F.
    Khan, A.
    Asghar, S.
    Acoustics Letters, 1993, 16 (09):
  • [42] Acoustic rotation modes in complex plasmas
    Bai, DX
    Wang, ZX
    Wang, XG
    CHINESE PHYSICS LETTERS, 2004, 21 (01) : 125 - 128
  • [43] Shock waves in complex (dusty) plasmas
    Samsonov, D
    Zhdanov, S
    Morfill, G
    Shock Waves, Vols 1 and 2, Proceedings, 2005, : 1055 - 1060
  • [44] Theoretical and experimental investigations of acoustic waves in embedded fluid-solid multi-string structures
    Liu, Yang
    D'Angelo, Ralph M.
    Sinha, Bikash K.
    Zeroug, Smaine
    APPLIED PHYSICS LETTERS, 2017, 110 (10)
  • [45] ION-ACOUSTIC AND ELECTRON-ACOUSTIC WAVES IN SHEET PLASMAS
    CHAUDHRY, MB
    TAHIR, MD
    JOURNAL OF PLASMA PHYSICS, 1989, 41 : 281 - 287
  • [46] Nonlinear evolution of ion acoustic solitary waves in space plasmas: Fluid and particle-in-cell simulations
    Kakad, Bharati
    Kakad, Amar
    Omura, Yoshiharu
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (07) : 5589 - 5599
  • [47] Nonlinear interaction of electron plasma waves with electron acoustic waves in plasmas
    Chakrabarti, Nikhil
    Sengupta, Sudip
    PHYSICS OF PLASMAS, 2009, 16 (07)
  • [48] The energy reflection coefficient of electrorheological fluid with continuously changing acoustic impedance
    Lvhui Ding
    Qibai Huang
    Zhisheng Xu
    Qian Zhang
    International Journal of Mechanics and Materials in Design, 2010, 6 : 135 - 145
  • [49] The energy reflection coefficient of electrorheological fluid with continuously changing acoustic impedance
    Ding, Lvhui
    Huang, Qibai
    Xu, Zhisheng
    Zhang, Qian
    INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN, 2010, 6 (02) : 135 - 145
  • [50] The application of the constants of motion to nonlinear stationary waves in complex plasmas: a unified fluid dynamic viewpoint
    McKenzie, JF
    Dubinin, E
    Sauer, K
    Doyle, TB
    JOURNAL OF PLASMA PHYSICS, 2004, 70 : 431 - 462