Sharp energy estimates for finite element approximations of non-convex problems

被引:0
|
作者
Chipot, M [1 ]
Müller, S [1 ]
机构
[1] Univ Zurich, Math Inst, CH-8057 Zurich, Switzerland
关键词
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
引用
收藏
页码:317 / 325
页数:9
相关论文
共 50 条
  • [21] Sharp Poincare inequalities in a class of non-convex sets
    Brandolini, Barbara
    Chiacchio, Francesco
    Dryden, Emily B.
    Langford, Jeffrey J.
    JOURNAL OF SPECTRAL THEORY, 2018, 8 (04) : 1583 - 1615
  • [22] DUALITY FOR A CLASS OF NON-CONVEX PROBLEMS
    GONCALVES, AS
    OPERATIONS RESEARCH, 1975, 23 : B286 - B286
  • [23] CLASS OF NON-CONVEX OPTIMIZATION PROBLEMS
    HIRCHE, J
    TAN, HK
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1977, 57 (04): : 247 - 253
  • [24] Duality for non-convex variational problems
    Bouchitte, Guy
    Fragala, Ilaria
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (04) : 375 - 379
  • [26] Sharp Holder estimates on convex domains of finite type
    Cumenge, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (10): : 1077 - 1080
  • [27] Probabilistic Guarantees of Stochastic Recursive Gradient in Non-convex Finite Sum Problems
    Zhong, Yanjie
    Li, Jiaqi
    Lahiri, Soumendra
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT III, PAKDD 2024, 2024, 14647 : 142 - 154
  • [28] Global optimization method with dual Lipschitz constant estimates for problems with non-convex constraints
    Strongin, Roman
    Barkalov, Konstantin
    Bevzuk, Semen
    SOFT COMPUTING, 2020, 24 (16) : 11853 - 11865
  • [29] Global optimization method with dual Lipschitz constant estimates for problems with non-convex constraints
    Roman Strongin
    Konstantin Barkalov
    Semen Bevzuk
    Soft Computing, 2020, 24 : 11853 - 11865
  • [30] A PRIORI ESTIMATES FOR POSITIVE SOLUTIONS TO SUBCRITICAL ELLIPTIC PROBLEMS IN A CLASS OF NON-CONVEX REGIONS
    Castro, Alfonso
    Pardo, Rosa
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (03): : 783 - 790