Mtap2 is a constituent of the protein network that regulates twik-related K+ channel expression and trafficking

被引:50
|
作者
Sandoz, Guillaume
Tardy, Magalie P.
Thummler, Susanne
Feliciangeli, Sylvain
Lazdunski, Michel
Lesage, Florian [1 ]
机构
[1] CNRS, Inst Pharmacol Mol & Cellulaire, Inst Paul Hamel, UMR 6097, F-06560 Valbonne Sophia Antipoli, France
来源
JOURNAL OF NEUROSCIENCE | 2008年 / 28卷 / 34期
关键词
potassium channels; proteomics; microtubules; trafficking; postsynaptic dense bodies; scaffolding;
D O I
10.1523/JNEUROSCI.1962-08.2008
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Twik-related K+ (TREK) channels produce background currents that regulate cell excitability. In vivo, TREK-1 is involved in neuronal processes including neuroprotection against ischemia, general anesthesia, pain perception, and mood. Recently, we demonstrated that A-kinase anchoring protein AKAP150 binds to a major regulatory domain of TREK-1, promoting drastic changes in channel regulation by polyunsaturated fatty acids, pH, and stretch, and by G-protein-coupled receptors to neurotransmitters and hormones. Here, we show that the microtubule-associated protein Mtap2 is another constituent of native TREK channels in the brain. Mtap2 binding to TREK-1 and TREK-2 does not affect directly channel properties but enhances channel surface expression and current density. This effect relies on Mtap2 binding to microtubules. Mtap2 and AKAP150 interacting sites in TREK-1 are distinct and both proteins can dock simultaneously. Their effects on TREK-1 surface expression and activation are cumulative. In neurons, the three proteins are simultaneously detected in postsynaptic dense bodies. AKAP150 and Mtap2 put TREK channels at the center of a complex protein network that finely tunes channel trafficking, addressing, and regulation.
引用
收藏
页码:8545 / 8552
页数:8
相关论文
共 50 条
  • [31] KCNMB1 regulates surface expression of a voltage and Ca2+-activated K+ channel via endocytic trafficking signals
    Toro, B.
    Cox, N.
    Wilson, R. J.
    Garrido-Sanabria, E.
    Stefani, E.
    Toro, L.
    Zarei, M. M.
    NEUROSCIENCE, 2006, 142 (03) : 661 - 669
  • [32] Pharmacologic TWIK-Related Acid-Sensitive K+ Channel (TASK-1) Potassium Channel Inhibitor A293 Facilitates Acute Cardioversion of Paroxysmal Atrial Fibrillation in a Porcine Large Animal Model
    Wiedmann, Felix
    Beyersdorf, Christoph
    Zhou, Xiaobo
    Buescher, Antonius
    Kraft, Manuel
    Nietfeld, Jendrik
    Walz, Teo Puig
    Unger, Laura A.
    Loewe, Axel
    Schmack, Bastian
    Ruhparwar, Arjang
    Karck, Matthias
    Thomas, Dierk
    Borggrefe, Martin
    Seemann, Gunnar
    Katus, Hugo A.
    Schmidt, Constanze
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2020, 9 (10):
  • [33] Towards a TREK-1/2 (TWIK-Related K + Channel 1 and 2) dual activator tool compound: Multi-dimensional optimization of BL-1249
    Iwaki, Yuzo
    Yashiro, Kentaro
    Kokubo, Masaya
    Mori, Takahiro
    Wieting, Joshua M.
    McGowan, Kevin M.
    Bridges, Thomas M.
    Engers, Darren W.
    Denton, Jerod S.
    Kurata, Haruto
    Lindsley, Craig W.
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2019, 29 (13) : 1601 - 1604
  • [34] Endosomal trafficking of two-pore K+ efflux channel TWIK2 to plasmalemma mediates NLRP3 inflammasome activation and inflammatory injury
    Huang, Long Shuang
    Anas, Mohammad
    Xu, Jingsong
    Zhou, Bisheng
    Toth, Peter T.
    Krishnan, Yamuna
    Di, Anke
    Malik, Asrar B.
    Vanaja, Sivapriya
    ELIFE, 2023, 12
  • [35] Up-regulated astroglial TWIK-related acid-sensitive K+ channel-1 (TASK-1) in the hippocampus of seizure-sensitive gerbils:: A target of anti-epileptic drugs
    Kim, Duk-Soo
    Kim, Ji-Eun
    Kwak, Sung-Eun
    Choi, Hui-Chul
    Song, Hong-Ki
    Kimg, Yeong-In
    Choi, Soo-Young
    Kang, Tae-Cheon
    BRAIN RESEARCH, 2007, 1185 : 346 - 358
  • [36] Genetic variants of rs1275988 and rs2586886 in TWIK-related acid-sensitive K+ channel-1 gene may be potential risk factors for obese patients with obstructive sleep apnea
    Shi, Tian
    Yao, Xiao-Guang
    Li, Mei
    Heizhati, Mulalibieke
    Li, Xiu-Fang
    Wen, Lu
    He, Yuan-Yuan
    Yao, Ling
    Wang, Ying-Chun
    Hong, Jing
    Li, Nan-Fang
    CHINESE MEDICAL JOURNAL, 2019, 132 (17) : 2059 - 2065
  • [37] Development of heart failure is independent of K+ channel-interacting protein2 expression
    Speerschneider, Tobias
    Grubb, Soren
    Metoska, Artina
    Olesen, Soren-Peter
    Calloe, Kirstine
    Thomsen, Morten B.
    JOURNAL OF PHYSIOLOGY-LONDON, 2013, 591 (23): : 5923 - 5937
  • [38] Molecular cloning and expression of the novel splice variants of K+ channel-interacting protein 2
    Ohya, S
    Morohashi, Y
    Muraki, K
    Tomita, T
    Watanabe, M
    Iwatsubo, T
    Imaizumi, Y
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2001, 282 (01) : 96 - 102
  • [39] The p38 mitogen-activated protein kinase pathway negatively regulates Ca2+-activated K+ channel trafficking in developing parasympathetic neurons
    Chae, KS
    Dryer, SE
    JOURNAL OF NEUROCHEMISTRY, 2005, 94 (02) : 367 - 379
  • [40] The trafficking protein, EHD2, positively regulates cardiac sarcolemmal KATP channel surface expression: role in cardioprotection
    Yang, Hua Qian
    Jana, Kundan
    Rindler, Michael J.
    Coetzee, William A.
    FASEB JOURNAL, 2018, 32 (03): : 1613 - 1625