Sparse random projection isolation forest for outlier detection

被引:12
|
作者
Tan, Xu [1 ]
Yang, Jiawei [1 ]
Rahardja, Susanto [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian 710072, Peoples R China
[2] Singapore Inst Technol, Singapore, Singapore
关键词
Outlier detection; Anomaly detection; Isolation forest; Random projection; Sparse random projection;
D O I
10.1016/j.patrec.2022.09.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Isolation Forest has a low computational complexity, hence has been widely applied to detect outliers in large-scale data. However, it suffers from the artifacts caused by the hyperplanes chosen, thereby failing to detect outliers in some specific regions. To tackle this problem, we propose the random-projectionbased Isolation Forest, which works in two steps. First, we transform the data using the random projection technique. Then, we employ the Isolation Forest to identify outliers using the transformed data. Experimental results show that the proposed methods outperform 12 state-of-the-art outlier detectors.(c) 2022 Published by Elsevier B.V.
引用
收藏
页码:65 / 73
页数:9
相关论文
共 50 条
  • [31] A mathematical assessment of the isolation random forest method for anomaly detection in big data
    Morales, Fernando A.
    Ramirez, Jorge M.
    Ramos, Edgar A.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (01) : 1156 - 1177
  • [32] AutoML technologies for the identification of sparse classification and outlier detection models
    Liuliakov, Aleksei
    Hermes, Luca
    Hammer, Barbara
    [J]. APPLIED SOFT COMPUTING, 2023, 133
  • [33] RODS: Rarity based Outlier Detection in a Sparse Coding Framework
    Dutta, Jayanta K.
    Banerjee, Bonny
    Reddy, Chandan K.
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (02) : 483 - 495
  • [34] Random forest with Random projection to impute missing gene expression data
    Gondara, Lovedeep
    [J]. 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2015, : 1251 - 1256
  • [35] Ensemble of optimal trees, random forest and random projection ensemble classification
    Khan, Zardad
    Gul, Asma
    Perperoglou, Aris
    Miftahuddin, Miftahuddin
    Mahmoud, Osama
    Adler, Werner
    Lausen, Berthold
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2020, 14 (01) : 97 - 116
  • [36] Ensemble of optimal trees, random forest and random projection ensemble classification
    Zardad Khan
    Asma Gul
    Aris Perperoglou
    Miftahuddin Miftahuddin
    Osama Mahmoud
    Werner Adler
    Berthold Lausen
    [J]. Advances in Data Analysis and Classification, 2020, 14 : 97 - 116
  • [37] Utilizing Random Forest with iForest-Based Outlier Detection and SMOTE to Detect Movement and Direction of RFID Tags
    Alfian, Ganjar
    Syafrudin, Muhammad
    Fitriyani, Norma Latif
    Alam, Sahirul
    Pratomo, Dinar Nugroho
    Subekti, Lukman
    Octava, Muhammad Qois Huzyan
    Yulianingsih, Ninis Dyah
    Atmaji, Fransiskus Tatas Dwi
    Benes, Filip
    [J]. FUTURE INTERNET, 2023, 15 (03):
  • [38] Sparse random projection for efficient cancelable face feature extraction
    Kim, Youngsung
    Toh, Kar-Ann
    [J]. ICIEA 2008: 3RD IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, PROCEEDINGS, VOLS 1-3, 2008, : 2139 - 2144
  • [39] Sparse multiple kernel learning: Minimax rates with random projection
    Lu, Wenqi
    Zhu, Zhongyi
    Li, Rui
    Lian, Heng
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2024, 231
  • [40] Optimizing PPDM in asynchronous sparse data using random projection
    Kumar, R. Raja
    Indumathi, J.
    Uma, G. V.
    [J]. PROCEEDINGS OF THE 2008 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, 2008, : 410 - 415