Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2

被引:115
|
作者
Yin, Ei [1 ,2 ]
Grimaud, Alexis [1 ,3 ]
Rousse, Gwenaelle [1 ,2 ,3 ]
Abakumov, Artem M. [4 ]
Senyshyn, Anatoliy [5 ]
Zhang, Leiting [6 ]
Trabesinger, Sigita [6 ]
Iadecola, Antonella [3 ]
Foix, Dominique [7 ]
Giaume, Domitille [8 ]
Tarascon, Jean-Marie [1 ,2 ,3 ]
机构
[1] Coll France, UMR 8260, Chim Solide & Energie, F-75231 Paris 05, France
[2] Sorbonne Univ, 4 Pl Jussieu, F-75005 Paris, France
[3] CNRS FR 3459, Reseau Stockage Electrochim Energie RS2E, 33 Rue St Leu, F-80039 Amiens, France
[4] Skolkovo Inst Sci & Technol, Ctr Energy Sci & Technol, 3 Nobel St, Moscow 143026, Russia
[5] Tech Univ Munich, Forsch Neutronenquelle Heinz Maier Leibnitz FRM I, Lichtenbergstr 1, D-85748 Garching, Germany
[6] Paul Scherrer Inst, Electrochem Lab, Forsch Str 111, CH-5232 Villigen, Switzerland
[7] Univ Pau & Pays Adour, CNRS, UMR 5254, IPREM, Helioparc,Ave Pierre Angot, F-64053 Pau 9, France
[8] PSL Univ, Inst Rech Chim Paris, CNRS, Chim ParisTech, F-75005 Paris, France
基金
俄罗斯科学基金会; 欧洲研究理事会;
关键词
RICH LAYERED OXIDES; ANIONIC REDOX ACTIVITY; CATHODE MATERIALS; ION BATTERIES; VOLTAGE-FADE; LI; CAPACITY; MN; ORIGIN; PARTICIPATION;
D O I
10.1038/s41467-020-14927-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-energy-density lithium-rich materials are of significant interest for advanced lithium-ion batteries, provided that several roadblocks, such as voltage fade and poor energy efficiency are removed. However, this remains challenging as their functioning mechanisms during first cycle are not fully understood. Here we enlarge the cycling potential window for Li1.2Ni0.13Mn0.54Co0.13O2 electrode, identifying novel structural evolution mechanism involving a structurally-densified single-phase A' formed under harsh oxidizing conditions throughout the crystallites and not only at the surface, in contrast to previous beliefs. We also recover a majority of first-cycle capacity loss by applying a constant-voltage step on discharge. Using highly reducing conditions we obtain additional capacity via a new low-potential P '' phase, which is involved into triggering oxygen redox on charge. Altogether, these results provide deeper insights into the structural-composition evolution of Li1.2Ni0.13Mn0.54Co0.13O2 and will help to find measures to cure voltage fade and improve energy efficiency in this class of material.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Electrochemical reaction mechanisms under various charge-discharge operating conditions for Li1.2Ni0.13Mn0.54Co0.13O2 in a lithium-ion battery
    Konishi, Hiroaki
    Hirano, Tatsumi
    Takamatsu, Daiko
    Gunji, Akira
    Feng, Xiaoliang
    Furutsuki, Sho
    Okumura, Takefumi
    Terada, Shohei
    Tamura, Kazuhisa
    JOURNAL OF SOLID STATE CHEMISTRY, 2018, 262 : 294 - 300
  • [32] Effect of Na2S treatment on the structural and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material
    Li, Yanxiu
    Li, Shaomin
    Zhong, Benhe
    Guo, Xiaodong
    Wu, Zhenguo
    Xiang, Wei
    Liu, Hao
    Liu, Guobiao
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2018, 22 (02) : 547 - 554
  • [33] Effect of Na2S treatment on the structural and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material
    Yanxiu Li
    Shaomin Li
    Benhe Zhong
    Xiaodong Guo
    Zhenguo Wu
    Wei Xiang
    Hao Liu
    Guobiao Liu
    Journal of Solid State Electrochemistry, 2018, 22 : 547 - 554
  • [34] Impact of LiTi2(PO4)3 coating on the electrochemical performance of Li1.2Ni0.13Mn0.54Co0.13O2 using a wet chemical method
    Zhang, Ning
    Li, Ying
    Luo, Yadan
    Yang, Zhen
    Lu, Jiayao
    IONICS, 2021, 27 (04) : 1465 - 1475
  • [35] Improving the electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material by In2O3 coating
    Zhou, Sisi
    Zhang, Zhihao
    Wang, Huanwen
    He, Beibei
    Gong, Yansheng
    Jin, Jun
    Zhang, Xianggong
    Wang, Rui
    IONICS, 2023, 29 (04) : 1323 - 1334
  • [36] Improving the electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material by In2O3 coating
    Sisi Zhou
    Zhihao Zhang
    Huanwen Wang
    Beibei He
    Yansheng Gong
    Jun Jin
    Xianggong Zhang
    Rui Wang
    Ionics, 2023, 29 : 1323 - 1334
  • [37] Enhanced electrochemical performances of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material coated with ZrO2
    Jing Cao
    Yang Li
    Lijun Wang
    Jing Li
    Yongmin Qiao
    Luping Zhu
    Suna Zhang
    Xixi Yan
    Huaqing Xie
    Ionics, 2023, 29 : 51 - 60
  • [38] Enhanced electrochemical performances of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material coated with ZrO2
    Cao, Jing
    Li, Yang
    Wang, Lijun
    Li, Jing
    Qiao, Yongmin
    Zhu, Luping
    Zhang, Suna
    Yan, Xixi
    Xie, Huaqing
    IONICS, 2023, 29 (01) : 51 - 60
  • [39] Unravelling structural changes of the Li1.2Mn0.54Ni0.13Co0.13O2 lattice upon cycling in lithium cell
    Celeste, A.
    Brescia, R.
    Gigli, L.
    Plaisier, J.
    Pellegrini, V.
    Silvestri, L.
    Brutti, S.
    MATERIALS TODAY SUSTAINABILITY, 2023, 21
  • [40] Effects of chelators on the structure and electrochemical properties of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2cathode materials
    Abdel-Ghany, A. E.
    Hashem, A. M.
    Mauger, A.
    Julien, C. M.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2020, 24 (11-12) : 3157 - 3172