Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2

被引:115
|
作者
Yin, Ei [1 ,2 ]
Grimaud, Alexis [1 ,3 ]
Rousse, Gwenaelle [1 ,2 ,3 ]
Abakumov, Artem M. [4 ]
Senyshyn, Anatoliy [5 ]
Zhang, Leiting [6 ]
Trabesinger, Sigita [6 ]
Iadecola, Antonella [3 ]
Foix, Dominique [7 ]
Giaume, Domitille [8 ]
Tarascon, Jean-Marie [1 ,2 ,3 ]
机构
[1] Coll France, UMR 8260, Chim Solide & Energie, F-75231 Paris 05, France
[2] Sorbonne Univ, 4 Pl Jussieu, F-75005 Paris, France
[3] CNRS FR 3459, Reseau Stockage Electrochim Energie RS2E, 33 Rue St Leu, F-80039 Amiens, France
[4] Skolkovo Inst Sci & Technol, Ctr Energy Sci & Technol, 3 Nobel St, Moscow 143026, Russia
[5] Tech Univ Munich, Forsch Neutronenquelle Heinz Maier Leibnitz FRM I, Lichtenbergstr 1, D-85748 Garching, Germany
[6] Paul Scherrer Inst, Electrochem Lab, Forsch Str 111, CH-5232 Villigen, Switzerland
[7] Univ Pau & Pays Adour, CNRS, UMR 5254, IPREM, Helioparc,Ave Pierre Angot, F-64053 Pau 9, France
[8] PSL Univ, Inst Rech Chim Paris, CNRS, Chim ParisTech, F-75005 Paris, France
基金
俄罗斯科学基金会; 欧洲研究理事会;
关键词
RICH LAYERED OXIDES; ANIONIC REDOX ACTIVITY; CATHODE MATERIALS; ION BATTERIES; VOLTAGE-FADE; LI; CAPACITY; MN; ORIGIN; PARTICIPATION;
D O I
10.1038/s41467-020-14927-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-energy-density lithium-rich materials are of significant interest for advanced lithium-ion batteries, provided that several roadblocks, such as voltage fade and poor energy efficiency are removed. However, this remains challenging as their functioning mechanisms during first cycle are not fully understood. Here we enlarge the cycling potential window for Li1.2Ni0.13Mn0.54Co0.13O2 electrode, identifying novel structural evolution mechanism involving a structurally-densified single-phase A' formed under harsh oxidizing conditions throughout the crystallites and not only at the surface, in contrast to previous beliefs. We also recover a majority of first-cycle capacity loss by applying a constant-voltage step on discharge. Using highly reducing conditions we obtain additional capacity via a new low-potential P '' phase, which is involved into triggering oxygen redox on charge. Altogether, these results provide deeper insights into the structural-composition evolution of Li1.2Ni0.13Mn0.54Co0.13O2 and will help to find measures to cure voltage fade and improve energy efficiency in this class of material.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2
    Wei Yin
    Alexis Grimaud
    Gwenaelle Rousse
    Artem M. Abakumov
    Anatoliy Senyshyn
    Leiting Zhang
    Sigita Trabesinger
    Antonella Iadecola
    Dominique Foix
    Domitille Giaume
    Jean-Marie Tarascon
    Nature Communications, 11
  • [2] Mechanisms responsible for two possible electrochemical reactions in Li1.2Ni0.13Mn0.54Co0.13O2 used for lithium ion batteries
    Konishi, Hiroaki
    Hirano, Tatsumi
    Takamatsu, Daiko
    Gunji, Akira
    Feng, Xiaoliang
    Furutsuki, Sho
    Okumura, Takefumi
    Terada, Shohei
    Tamura, Kazuhisa
    JOURNAL OF SOLID STATE CHEMISTRY, 2018, 258 : 225 - 231
  • [3] Improving the electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 by Li-ion conductor
    Wang, Ting
    Yang, Ze
    Jiang, Yan
    Li, Guolong
    Huang, Yunhui
    RSC ADVANCES, 2016, 6 (68): : 63749 - 63753
  • [4] Potential hysteresis between charge and discharge reactions in Li1.2Ni0.13Mn0.54Co0.13O2 for lithium ion batteries
    Konishi, Hiroaki
    Hirano, Tatsumi
    Takamatsu, Daiko
    Gunji, Akira
    Feng, Xiaoliang
    Furutsuki, Sho
    Takahashi, Shin
    Terada, Shohei
    SOLID STATE IONICS, 2017, 300 : 120 - 127
  • [5] Structural and Electrochemical Study of Al2O3 and TiO2 Coated Li1.2Ni0.13Mn0.54Co0.13O2 Cathode Material Using ALD
    Zhang, Xiaofeng
    Belharouak, Ilias
    Li, Li
    Lei, Yu
    Elam, Jeffrey W.
    Nie, Anmin
    Chen, Xinqi
    Yassar, Reza S.
    Axelbaum, Richard L.
    ADVANCED ENERGY MATERIALS, 2013, 3 (10) : 1299 - 1307
  • [6] Improving the electrochemical performance of Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 cathode through sodium doping
    Yang, Liu
    Liang, Tianquan
    Zeng, Weitian
    Zhu, Xiaofeng
    Chen, Zhuanyue
    He, Huan
    Chen, Xiyong
    Yan, Weilin
    ELECTROCHIMICA ACTA, 2022, 404
  • [7] Surface Modification of Li1.2Ni0.13Mn0.54Co0.13O2 by Hydrazine Vapor as Cathode Material for Lithium-Ion Batteries
    Zhang, Jie
    Lei, Zhihong
    Wang, Jiulin
    NuLi, Yanna
    Yang, Jun
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (29) : 15821 - 15829
  • [8] Surface modification of Li1.2Mn0.54Co0.13Ni0.13O2 with conducting polypyrrole
    Wu, Chengren
    Fang, Xiangpeng
    Guo, Xianwei
    Mao, Ya
    Ma, Jun
    Zhao, Changchun
    Wang, Zhaoxiang
    Chen, Liquan
    JOURNAL OF POWER SOURCES, 2013, 231 : 44 - 49
  • [9] Enhanced Cycle Stability of Li1.2Ni0.13Mn0.54Co0.13O2 Cathode with Sodium Oxalyldifluoroborate Electrolyte Salt for Hybrid Li-Na Ion Battery
    Wang, Suqin
    Zhang, Jie
    Xu, Zhixin
    Wang, Jiulin
    CHEMISTRYSELECT, 2021, 6 (44): : 12288 - 12294
  • [10] Niobium doping of Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials with enhanced structural stability and electrochemical performance
    Li, Honglei
    Jian, Zhixu
    Yang, Puheng
    Li, Jiajie
    Xing, Yalan
    Zhang, Shichao
    CERAMICS INTERNATIONAL, 2020, 46 (15) : 23773 - 23779