FPGA-Accelerated 3D Reconstruction Using Compressive Sensing

被引:0
|
作者
Chen, Jianwen [1 ]
Cong, Jason [1 ]
Yan, Ming
Zou, Yi [1 ]
机构
[1] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The radiation dose associated with computerized tomography (CT) is significant. Optimization-based iterative reconstruction approaches, e.g., compressive sensing provide ways to reduce the radiation exposure, without sacrificing image quality. However, the computational requirement such algorithms is much higher than that of the conventional Filtered Back Projection (FBP) reconstruction algorithm. This paper describes an FPGA implementation of one important iterative kernel called EM, which is the major computation kernel of a recent EM+TV reconstruction algorithm. We show that a hybrid approach (CPU+GPU+FPGA) can deliver a better performance and energy efficiency than GPU-only solutions, providing 13X boost of throughput than a dual-core CPU implementation.
引用
收藏
页码:163 / 166
页数:4
相关论文
共 50 条
  • [31] Compressive Confocal Microscopy: 3D Reconstruction Algorithms
    Ye, P.
    Paredes, J. L.
    Wu, Y.
    Chen, C.
    Arce, G. R.
    Prather, D. W.
    EMERGING DIGITAL MICROMIRROR DEVICE BASED SYSTEMS AND APPLICATIONS, 2009, 7210
  • [32] Tomographic Compressive Holographic Reconstruction of 3D Objects
    Nehmetallah, G.
    Williams, L.
    Banerjee, P. P.
    IMAGE RECONSTRUCTION FROM INCOMPLETE DATA VII, 2012, 8500
  • [33] COMPRESSIVE RECONSTRUCTION FOR 3D INCOHERENT HOLOGRAPHIC MICROSCOPY
    Cossairt, Oliver
    He, Kuan
    Shang, Ruibo
    Matsuda, Nathan
    Sharma, Manoj
    Huang, Xiang
    Katsaggelos, Aggelos
    Spinoulas, Leonidas
    Yoo, Seunghwan
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 958 - 962
  • [34] 3D imaging using compressive line sensing serial imaging system
    Ouyang, Bing
    Caimi, Frank M.
    Dalgleish, Fraser R.
    Nootz, Gero
    Vuorenkoski, Anni K.
    COMPRESSIVE SENSING III, 2014, 9109
  • [35] EFFICIENT 3D SEISMIC ACQUISITION DESIGN USING COMPRESSIVE SENSING PRINCIPLES
    Zhang, Mengli
    JOURNAL OF SEISMIC EXPLORATION, 2023, 32 (05): : 454 - 454
  • [36] 3D Interferometric ISAR via Compressive Sensing
    Bacci, A.
    Stagliano, D.
    Giusti, E.
    Tomei, S.
    Berizzi, F.
    Martorella, M.
    2014 11TH EUROPEAN RADAR CONFERENCE (EURAD), 2014, : 233 - 236
  • [37] 3D Thermoacoustic Imaging Based on Compressive Sensing
    Wang, Baosheng
    Ba, Zhongling
    Sun, Yifei
    Xu, Lifan
    Wang, Xiong
    2018 IEEE INTERNATIONAL WORKSHOP ON ANTENNA TECHNOLOGY (IWAT), 2018,
  • [38] Application of Compressive Sensing in 3D Radar Imaging
    Xie Xiao-Chun
    2010 IEEE 10TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS (ICSP2010), VOLS I-III, 2010, : 2117 - 2120
  • [39] 2D and 3D Far-Field Radiation Patterns Reconstruction Based on Compressive Sensing
    Verdin, Berenice
    Debroux, Patrick
    PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2016, 46 : 47 - 56
  • [40] Acceleration of EM-Based 3D CT Reconstruction Using FPGA
    Choi, Young-kyu
    Cong, Jason
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2016, 10 (03) : 754 - 767