Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive Polymer Anode for Li-ion Batteries

被引:37
|
作者
Gu, Meng [1 ]
Xiao, Xing-Cheng [2 ]
Liu, Gao [3 ]
Thevuthasan, Suntharampillai [1 ]
Baer, Donald R. [1 ]
Zhang, Ji-Guang [4 ]
Liu, Jun [4 ]
Browning, Nigel D. [5 ]
Wang, Chong-Min [1 ]
机构
[1] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA
[2] Gen Motors Global Res & Dev Ctr, Warren, MI 48090 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[4] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA
[5] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA
来源
SCIENTIFIC REPORTS | 2014年 / 4卷
关键词
SILICON NANOPARTICLES; PHASE-TRANSITION; LITHIATION; PERFORMANCE; TEM;
D O I
10.1038/srep03684
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electrode used in lithium-ion battery is invariably a composite of multifunctional components. The performance of the electrode is controlled by the interactive function of all components at mesoscale. Fundamental understanding of mesoscale phenomenon sets the basis for innovative designing of new materials. Here we report the achievement and origin of a significant performance enhancement of electrode for lithium ion batteries based on Si nanoparticles wrapped with conductive polymer. This new material is in marked contrast with conventional material, which exhibit fast capacity fade. In-situ TEM unveils that the enhanced cycling stability of the conductive polymer-Si composite is associated with mesoscale concordant function of Si nanoparticles and the conductive polymer. Reversible accommodation of the volume changes of Si by the conductive polymer allows good electrical contact between all the particles during the cycling process. In contrast, the failure of the conventional Si-electrode is probed to be the inadequate electrical contact.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Phase stability of Li-ion conductive, ternary solid polymer electrolytes
    Joost, Mario
    Kim, Guk Tae
    Winter, Martin
    Passerini, Stefano
    ELECTROCHIMICA ACTA, 2013, 113 : 181 - 185
  • [32] Si-Based Anode Materials for Li-Ion Batteries: A Mini Review
    Ma, Delong
    Cao, Zhanyi
    Hu, Anming
    NANO-MICRO LETTERS, 2014, 6 (04) : 347 - 358
  • [33] Interconnected conductive gel binder for high capacity silicon anode for Li-ion batteries
    Taskin, Omer S.
    Yuca, Neslihan
    Papavasiliou, Joan
    Avgouropoulos, George
    MATERIALS LETTERS, 2020, 273
  • [34] Scalable Fabrication of Si-Graphene Composite as Anode for Li-ion Batteries
    Lou, Ding
    Chen, Shuyi
    Langrud, Strauss
    Razzaq, Amir Abdul
    Mao, Mingyang
    Younes, Hammad
    Xing, Weibing
    Lin, Tim
    Hong, Haiping
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [35] Attainment of high rate capability of Si film as the anode of Li-ion batteries
    Ohara, S
    Suzuki, JJ
    Sekine, K
    Takamura, T
    ELECTROCHEMISTRY, 2003, 71 (12) : 1126 - 1128
  • [36] Si-Based Anode Materials for Li-Ion Batteries:A Mini Review
    Delong Ma
    Zhanyi Cao
    Anming Hu
    Nano-Micro Letters, 2014, 6 (04) : 347 - 358
  • [37] Si-Based Anode Materials for Li-Ion Batteries: A Mini Review
    Delong Ma
    Zhanyi Cao
    Anming Hu
    Nano-Micro Letters, 2014, 6 : 347 - 358
  • [38] A binder-free Si-based anode for Li-ion batteries
    Zhang, Chunqian
    Yang, Fan
    Zhang, Dalin
    Zhang, Xu
    Xue, Chunlai
    Zuo, Yuhua
    Li, Chuanbo
    Cheng, Buwen
    Wang, Qiming
    RSC ADVANCES, 2015, 5 (21) : 15940 - 15943
  • [40] Si-SiOx-Cristobalite/Graphite Composite as Anode for Li-ion Batteries
    Ren, Yurong
    Li, Mingqi
    ELECTROCHIMICA ACTA, 2014, 142 : 11 - 17